Optimal control of Volterra integral equations in two independent variables

被引:3
|
作者
Belbas, S. A. [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
Volterra integral equations in two independent variables; extremality condition;
D O I
10.1016/j.amc.2008.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an extremality condition for optimal control problems for systems of integral equations of Volterra type with two independent variables. These systems generalize both, the hyperbolic control problems in two independent variables, and the optimal control of ordinary (i.e. with one independent variable) Volterra integral equations. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:647 / 665
页数:19
相关论文
共 50 条
  • [21] Optimal control of system governed by nonlinear volterra integral and fractional derivative equations
    Leila Moradi
    Dajana Conte
    Eslam Farsimadan
    Francesco Palmieri
    Beatrice Paternoster
    Computational and Applied Mathematics, 2021, 40
  • [22] Optimal control of system governed by nonlinear volterra integral and fractional derivative equations
    Moradi, Leila
    Conte, Dajana
    Farsimadan, Eslam
    Palmieri, Francesco
    Paternoster, Beatrice
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [23] OPTIMAL CONTROL PROBLEMS OF FORWARD-BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Shi, Yufeng
    Wang, Tianxiao
    Yong, Jiongmin
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2015, 5 (03) : 613 - 649
  • [24] On the Maximum Principle for Optimal Control Problems of Stochastic Volterra Integral Equations with Delay
    Hamaguchi, Yushi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [25] Risk-neutral multiobjective optimal control of random Volterra integral equations
    Dinh, Tuan Nguyen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 523 (02)
  • [26] Optimal control of volterra equations with impulses
    Belbas, SA
    Schmidt, WH
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 166 (03) : 696 - 723
  • [27] Singular Control of Stochastic Volterra Integral Equations
    Nacira Agram
    Saloua Labed
    Bernt Øksendal
    Samia Yakhlef
    Acta Mathematica Scientia, 2022, 42 : 1003 - 1017
  • [28] SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Nacira AGRAM
    Saloua LABED
    Bernt ?KSENDAL
    Samia YAKHLEF
    Acta Mathematica Scientia, 2022, 42 (03) : 1003 - 1017
  • [29] SINGULAR CONTROL OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
    Agram, Nacira
    Labed, Saloua
    Oksendal, Bernt
    Yakhlef, Samia
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1003 - 1017
  • [30] Regularized Asymptotic Solutions of Singularly Perturbed Integral Equations with Two Independent Variables
    A. A. Bobodzhanov
    V. F. Safonov
    Differential Equations, 2019, 55 : 260 - 269