Effect of overlay thickness, fiber volume, and shrinkage mitigation on flexural behavior of thin bonded ultra-high-performance concrete overlay slab

被引:30
|
作者
Teng, Le [1 ]
Khayat, Kamal H. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Civil Architectural & Environm Engn, Rolla, MO 65409 USA
来源
关键词
Bridge deck overlay; Flexural performance; Interface slip; Ultra-high-performance concrete; SATURATED LIGHTWEIGHT SAND; BEAMS; UHPC; STRENGTH; MODEL;
D O I
10.1016/j.cemconcomp.2022.104752
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigated the flexural performance of 10 reinforced concrete slabs rehabilitated using thin ultra-high-performance concrete (UHPC) bonded overlay. The performance was compared to two slabs repaired using latex-modified concrete (LMC) that is widely used for bridge deck rehabilitation. Test parameters included the overlay thickness (25, 38, and 50 mm), fiber volume (2% and 3.25%), and shrinkage mitigation methods for the UHPC. The overlay slab specimens were stored outdoor for 30 months before conducting the four-point bending test. Experimental results indicated that the overlay slabs exhibited flexural failure pattern with yield of reinforcing steel, concrete crushing of the reinforced concrete substrate, and multiple cracks in the overlay. The use of UHPC thin bonded overlay enhanced cracking load by 295%-395% and flexural capacity by 35%-75% compared to the LMC overlay slabs. The maximum crack width of UHPC overlay slabs at the stage of the yield of reinforcement was less than 0.1 mm compared to 0.25-0.3 mm for the LMC overlay slabs. No slip occurred at the interface between the UHPC overlay and substrate, whereas the slip initiated following LMC overlay cracking. The increase of overlay thickness from 25 to 50 mm and fiber volume from 2% to 3.25% enhanced the flexural load capacity of the UHPC overlay slabs by 30%-40% and 10%-25%, respectively. These two strategies also reduced crack opening and propagation before the yield of reinforcing steel. The use of pre-saturated lightweight sand and CaO-based expansive agent was effective in mitigating autogenous and drying shrinkage without significantly influencing the flexural capacity of UHPC overlay slab.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios
    Hasgul, Umut
    Turker, Kaan
    Birol, Tamer
    Yavas, Altug
    STRUCTURAL CONCRETE, 2018, 19 (06) : 1577 - 1590
  • [12] Size effect on flexural behavior of ultra-high-performance concrete beams with different reinforcement
    Cao, Xia
    Ren, Yi-Cheng
    Qian, Kai
    Fu, Feng
    Deng, Xiao-Fang
    Zhang, Wei-Jia
    STRUCTURES, 2022, 41 : 969 - 981
  • [13] Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Moment Connection for Precast Concrete Decks
    Lee, Jun Ki
    Lee, Seung Noon
    ACI STRUCTURAL JOURNAL, 2015, 112 (04) : 451 - 462
  • [14] Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Moment Connection for Precast Concrete Decks
    Chen, Shiming
    Wang, Changjiang
    ACI STRUCTURAL JOURNAL, 2016, 113 (03) : 637 - 638
  • [15] Effects of fiber type and specimen thickness on flexural behavior of ultra-high-performance fiber-reinforced concrete subjected to uniaxial and biaxial stresses
    Shin, Hyun-Oh
    Kim, Kyungteak
    Oh, Taekgeun
    Yoo, Doo-Yeol
    Case Studies in Construction Materials, 2021, 15
  • [16] Effects of fiber type and specimen thickness on flexural behavior of ultra-high-performance fiber-reinforced concrete subjected to uniaxial and biaxial stresses
    Shin, Hyun-Oh
    Kim, Kyungteak
    Oh, Taekgeun
    Yoo, Doo-Yeol
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2021, 15
  • [17] Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber- reinforced concrete slabs
    Yoo, Doo-Yeol
    Kwon, Ki-Yeon
    Yang, Jun-Mo
    Yoon, Young-Soo
    STRUCTURAL ENGINEERING AND MECHANICS, 2017, 61 (06) : 711 - 719
  • [18] A comparative study of flexural and shear behavior of ultra-high-performance fiber-reinforced concrete beams
    Pourbaba, Masoud
    Sadaghian, Hamed
    Mirmiran, Amir
    ADVANCES IN STRUCTURAL ENGINEERING, 2019, 22 (07) : 1727 - 1738
  • [19] Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams after Exposure to High Temperatures
    Chen, How-Ji
    Chen, Chien-Chuan
    Lin, Hung-Shan
    Lin, Shu-Ken
    Tang, Chao-Wei
    MATERIALS, 2021, 14 (18)
  • [20] Effect of shrinkage-mitigating additive and curing condition on flexural and fracture behavior of ultra-high-performance concrete (UHPC) unnotched beam
    Zhang, Youyou
    Feng, Hucheng
    Shah, Syed Yasir
    Xin, Haohui
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 445