Topological dynamics of 2D cellular automata

被引:4
|
作者
Sablik, Mathieu [1 ,2 ]
Theyssier, Guillaume [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, UMPA, 46 Allee Italie, F-69364 Lyon, France
[2] Univ Aix Marseille 1, CMI, CNRS, LATP,UMR 6632, F-13453 Marseille, France
[3] Universite Savoie, CNRS, LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
来源
关键词
D O I
10.1007/978-3-540-69407-6_56
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on 2D CA and aims at showing that the situation is different and more complex. The main results are the existence of non sensitive CA without equicontinuous points, the nonrecursivity of sensitivity constants and the existence of CA having only non-recursive equicontinuous points. They all show a difference between the 1D and the 2D case. Thanks to these new constructions, we also extend undecidability results concerning topological classification previously obtained in the ID case.
引用
收藏
页码:523 / +
页数:2
相关论文
共 50 条
  • [41] Characterization of 2D Hybrid Cellular Automata with Periodic Boundary
    Acar, E.
    Uguz, S.
    Akin, H.
    ACTA PHYSICA POLONICA A, 2017, 131 (03) : 432 - 436
  • [42] Physical Neural Cellular Automata for 2D Shape Classification
    Walker, Kathryn
    Palm, Rasmus Berg
    Moreno, Rodrigo
    Faina, Andres
    Stoy, Kasper
    Risi, Sebastian
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 12667 - 12673
  • [43] Dynamics and topological entropy of 1D Greenberg-Hastings cellular automata
    Kesseboehmer, M.
    Rademacher, J. D. M.
    Ulbrich, D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (05) : 1397 - 1430
  • [44] Computing aggregate properties of preimages for 2D cellular automata
    Beer, Randall D.
    CHAOS, 2017, 27 (11)
  • [45] Reversibility Algorithm for 2D Cellular Automata with Reflective Condition
    Redjepov, S.
    Acar, E.
    Uguz, S.
    ACTA PHYSICA POLONICA A, 2018, 134 (01) : 454 - 456
  • [46] Digital Image Scrambling Using 2D Cellular Automata
    Abu Dalhoum, Abdel Latif
    Mahafzah, Basel A.
    Awwad, Aiman Ayyal
    Aldamari, Ibrahim
    Ortega, Alfonso
    Alfonseca, Manuel
    IEEE MULTIMEDIA, 2012, 19 (04) : 28 - 36
  • [47] Exploration of 2D Cellular Automata as Binary Sequence Generators
    Arvaniti, Efthymia
    Mavridis, Ilias
    Kakarountas, Athanasios
    IEEE ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2010), 2010, : 41 - 45
  • [48] A new approach of stream duplication in 2D cellular automata
    Sapin, E
    Bailleux, O
    Chabrier, JJ
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 47 - 50
  • [49] Probabilistic Binary Classification with Use of 2D Cellular Automata
    Szaban, Miroslaw
    CELLULAR AUTOMATA, ACRI 2016, 2016, 9863 : 456 - 465
  • [50] A Note on the Reversibility of 2D Cellular Automata on Hexagonal Grids
    Augustynowicz, Antoni
    Baetens, Jan M.
    De Baets, Bernard
    Dzedzej, Adam
    Nenca, Anna
    Wolnik, Barbara
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (5-6) : 521 - 526