Key interactions of the mutant HIV-1 reverse transcriptase/efavirenz: an evidence obtained from ONIOM method

被引:13
|
作者
Boonsri, Pornthip [1 ,2 ,3 ]
Kuno, Mayuso [4 ]
Hannongbua, Supa [1 ,2 ,3 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Chem, Bangkok 10900, Thailand
[2] Kasetsart Univ, Ctr Nanotechnol KU, Bangkok 10900, Thailand
[3] Kasetsart Univ, NANOTEC Ctr Excellence, Bangkok 10900, Thailand
[4] Srinakharinwirot Univ, Fac Sci, Dept Chem, Bangkok 10110, Thailand
关键词
IMMUNODEFICIENCY-VIRUS TYPE-1; QUANTUM-CHEMICAL CALCULATIONS; WILD-TYPE; K103N MUTANT; CRYSTAL-STRUCTURES; EFAVIRENZ DMP-266; STRUCTURAL BASIS; DRUG-RESISTANCE; BINDING-ENERGY; HIGHLY POTENT;
D O I
10.1039/c1md00162k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two-layered ONIOM calculations were performed in order to compare the binding of efavirenz (EFV) to the HIV-1 RI binding pocket of both wild type (WT) and K103N enzymes. The K103N mutation reduces the binding affinity of the inhibitor by 5.81 kcal mol(-1) as obtained from the ONIOM2 (B3LYP/6-31G(d,p):PM3) method. These indicate that the loss of binding energy to K103N mutation can attribute to a weakened attractive interaction between the drug and residues surrounding in the binding pocket. The deformation of the K103N binding pocket requires more energy for structural rearrangement than that of the WT by approximately 4.0 kcal mol(-1). Moreover, the pairwise energies perfectly demonstrate that the K103N mutation affects on the loss of the interaction energy. In addition, the main influences are due to residues surrounding in the binding pocket; K101, K102, S105, V179, W229, P236 and E138. In particular, two residues; K101 and S105, established hydrogen bondings with the inhibitor. ONIOM calculations, resulting in the details of binding energy, interaction energy and deformation energy can be used to identify the key interaction and structural requirements of more potent HIV-1 RT inhibitor.
引用
收藏
页码:1181 / 1187
页数:7
相关论文
共 50 条
  • [31] Convenient route to efavirenz analogues as potential non-nucleoside HIV-1 reverse transcriptase inhibitors
    Hamed, AA
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2004, 59 (05): : 589 - 596
  • [32] Molecular mechanics PBSA ligand binding energy and interaction of Efavirenz derivatives with HIV-1 reverse transcriptase
    Weinzinger, P
    Hannongbua, S
    Wolschann, P
    JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY, 2005, 20 (02) : 129 - 134
  • [33] Efavirenz accelerates HIV-1 reverse transcriptase ribonuclease h cleavage, leading to diminished zidovudine excision
    Radzio, Jessica
    Sluis-Cremer, Nicolas
    MOLECULAR PHARMACOLOGY, 2008, 73 (02) : 601 - 606
  • [34] Novel HIV-1 reverse transcriptase inhibitors
    Jochmans, Dirk
    VIRUS RESEARCH, 2008, 134 (1-2) : 171 - 185
  • [35] Specific HIV-1 integrase-reverse transcriptase interactions as a mechanism for promoting reverse transcription
    Chow, Samson A.
    Wilkinson, Thomas A.
    Zhang, Min
    Januszyk, Kurt
    Phillips, Martin L.
    Le Grice, Stuart F. J.
    Clubb, Robert T.
    FASEB JOURNAL, 2009, 23
  • [36] Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation
    Tachedjian, G
    Moore, KL
    Goff, SP
    Sluis-Cremer, N
    FEBS LETTERS, 2005, 579 (02): : 379 - 384
  • [37] TEMPLATE PRIMER INTERACTIONS WITH RECOMBINANT FORMS OF HIV-1 REVERSE-TRANSCRIPTASE
    BEARD, WA
    KUMAR, A
    WILSON, SH
    FASEB JOURNAL, 1992, 6 (01): : A357 - A357
  • [38] Reverse transcriptase fidelity and HIV-1 variation
    Preston, BD
    SCIENCE, 1997, 275 (5297) : 228 - 229
  • [39] HIV-1 Reverse Transcriptase Heterodimer Stability
    Kar, S. R.
    Lebowitz, J.
    Braswell, E.
    McPherson, S.
    Protein Engineering, 8
  • [40] FIDELITY OF HIV-1 REVERSE-TRANSCRIPTASE
    PRESTON, BD
    POIESZ, BJ
    LOEB, LA
    SCIENCE, 1988, 242 (4882) : 1168 - 1171