A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations

被引:4
|
作者
Arshad, Sadia [1 ,4 ]
Baleanu, Dumitru [2 ,6 ,7 ]
Huang, Jianfei [3 ]
Tang, Yifa [4 ,5 ]
Zhao, Yue [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Lahore, Pakistan
[2] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[3] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[6] Inst Space Sci, Magurele 077125, Romania
[7] Tshwane Univ Technol, Fac Sci, Dept Math & Stat, Arcadia Campus,Bldg 2-117,Nelson Mandela Dr, ZA-0001 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Fractional diffusion equation; Riesz derivative; high-order approximation; stability; convergence; IMPLICIT NUMERICAL-METHOD; HIGH-ORDER APPROXIMATION; SPECTRAL METHOD; CAPUTO DERIVATIVES; SCHEME; CONVERGENCE;
D O I
10.4208/eajam.280218.210518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite difference method for a class of time-space fractional diffusion equations is considered. The trapezoidal formula and a fourth-order fractional compact difference scheme are, respectively, used in temporal and spatial discretisations and the method stability is studied. Theoretical estimates of the convergence in the L-2 -norm are shown to be O(tau(2) + h(4)), where tau and h are time and space mesh sizes. Numerical examples confirm theoretical results.
引用
收藏
页码:764 / 781
页数:18
相关论文
共 50 条
  • [21] A FAST SECOND-ORDER FINITE DIFFERENCE METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Basu, Treena S.
    Wang, Hong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (03) : 658 - 666
  • [22] A linearized finite difference scheme for time-space fractional nonlinear diffusion-wave equations with initial singularity
    Mohmed Elmandi, Emadidin Gahalla
    Huang, Jianfei
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (05) : 1769 - 1783
  • [23] Maximum principle for the time-space fractional diffusion equations
    Wang, Jingyu
    Yan, Zaizai
    Zhao, Yang
    Lv, Zhihan
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (12) : 5636 - 5640
  • [24] Finite difference schemes for two-dimensional time-space fractional differential equations
    Wang, Zhibo
    Vong, Seakweng
    Lei, Siu-Long
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (03) : 578 - 595
  • [25] Crank-Nicolson Finite Difference Scheme for Time-Space Fractional Diffusion Equation
    Takale, Kalyanrao C.
    Sangvikar , Veena V.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 701 - 710
  • [26] A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Zhang, Yaping
    Cao, Jiliang
    Bu, Weiping
    Xiao, Aiguo
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (02)
  • [27] Time fourth-order energy-preserving AVF finite difference method for nonlinear space-fractional wave equations
    Hou, Baohui
    Liang, Dong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [28] A Fast Second-Order Implicit Difference Method for Time-Space Fractional Advection-Diffusion Equation
    Zhao, Yong-Liang
    Huang, Ting-Zhu
    Gu, Xian-Ming
    Luo, Wei-Hua
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (03) : 257 - 293
  • [29] A high order finite difference/spectral approximations to the time fractional diffusion equations
    Cao, Junying
    Xu, Chuanju
    Wang, Ziqiang
    MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 781 - +
  • [30] Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative
    Elmahdi, Emadidin Gahalla Mohmed
    Huang, Jianfei
    AIMS MATHEMATICS, 2021, 6 (06): : 6356 - 6376