Image-similarity-based Convolutional Neural Network for Robot Visual Relocalization

被引:4
|
作者
Wang, Li [1 ]
Li, Ruifeng [1 ]
Sun, Jingwen [1 ]
Seah, Hock Soon [2 ]
Quah, Chee Kwang [3 ]
Zhao, Lijun [1 ]
Tandianus, Budianto [2 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, 92 Xidazhi St, Harbin 150006, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Nanyang Ave, Singapore 639798, Singapore
[3] ST Elect Training & Simulat Syst Pte Ltd, 24 Ang Mo Kio St, Singapore 560353, Singapore
基金
中国国家自然科学基金;
关键词
visual relocalization; CNN; image similarity; CLASSIFICATION; WORDS; SLAM;
D O I
10.18494/SAM.2020.2549
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Convolutional neural network (CNN)-based methods, which train an end-to-end model to regress a six degree of freedom (DoF) pose of a robot from a single red-green-blue (RGB) image, have been developed to overcome the poor robustness of robot visual relocalization recently. However, the pose precision becomes low when the test image is dissimilar to training images. In this paper, we propose a novel method, named image-similarity-based CNN, which considers the image similarity of an input image during the CNN training. The higher the similarity of the input image, the higher precision we can achieve. Therefore, we crop the input image into several small image blocks, and the similarity between each cropped image block and training dataset images is measured by employing a feature vector in a fully connected CNN layer. Finally, the most similar image is selected to regress the pose. A genetic algorithm is utilized to determine the cropped position. Experiments on both open-source dataset 7-Scenes and two actual indoor environments are conducted. The results show that the proposed algorithm leads to better results and reduces large regression errors effectively compared with existing solutions.
引用
收藏
页码:1245 / 1259
页数:15
相关论文
共 50 条
  • [31] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [32] Image Forgery Detection Based on the Convolutional Neural Network
    Feng Guorui
    Wu Jian
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 266 - 270
  • [33] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [34] Image Retrieval Algorithm based on Convolutional Neural Network
    Huang, Wen-qing
    Wu, Qiang
    CURRENT TRENDS IN COMPUTER SCIENCE AND MECHANICAL AUTOMATION, VOL 1, 2017, : 304 - 314
  • [35] Convolutional Neural Network Based Image Segmentation: A Review
    Ajmal, Hina
    Rehman, Saad
    Farooq, Umar
    Ain, Qurrat U.
    Riaz, Farhan
    Hassan, Ali
    PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649
  • [36] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [37] Research on Image Retrieval Based on the Convolutional Neural Network
    Chen, Chaoyi
    Li, Xiaoqi
    Zhang, Bin
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [38] Face Image Recognition Based on Convolutional Neural Network
    Lou, Guangin
    Shi, Hongzhen
    CHINA COMMUNICATIONS, 2020, 17 (02) : 117 - 124
  • [39] Infrared image denoising based on convolutional neural network
    Sun, Cheng
    Pan, Mingqiang
    Zhou, Bin
    Zhu, Zongjian
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 499 - 502
  • [40] CT image classification based on convolutional neural network
    Zhang, Yuezhong
    Wang, Shi
    Zhao, Honghua
    Guo, Zhenhua
    Sun, Dianmin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8191 - 8200