Machine learning glasses

被引:6
|
作者
Biroli, Giulio [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,ENS,CNRS, Paris, France
关键词
4;
D O I
10.1038/s41567-020-0873-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Artificial neural networks now allow the dynamics of supercooled liquids to be predicted from their structure alone in an unprecedented way, thus providing a powerful new tool to study the physics of the glass transition.
引用
收藏
页码:373 / 374
页数:2
相关论文
共 50 条
  • [21] Density of Bismuth Boro Zinc Glasses Using Machine Learning Techniques
    Shaik Amer Ahmed
    Shaik Rajiya
    M. A. Samee
    Shaik Kareem Ahmmad
    Kaleem Ahmed Jaleeli
    Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32 : 941 - 953
  • [22] Machine learning unveils composition-property relationships in chalcogenide glasses
    Mastelini, Saulo Martiello
    Cassar, Daniel R.
    Alcobaca, Edesio
    Botari, Tiago
    de Carvalho, Andre C. P. L. F.
    Zanotto, Edgar D.
    ACTA MATERIALIA, 2022, 240
  • [23] Predicting the glass formation of metallic glasses using machine learning approaches
    Li, Zhuang
    Long, Zhilin
    Lei, Shan
    Zhang, Ting
    Liu, Xiaowei
    Kuang, Dumin
    Computational Materials Science, 2021, 197
  • [24] Characterization of nanoscale structural heterogeneity in metallic glasses: A machine learning study
    Samavatian, Majid
    Gholamipour, Reza
    Bokov, Dmitry Olegovich
    Suksatan, Wanich
    Samavatian, Vahid
    Mahmoodan, Morteza
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2022, 578
  • [25] Machine learning as a tool to design glasses with controlled dissolution for healthcare applications
    Han, Taihao
    Stone-Weiss, Nicholas
    Huang, Jie
    Goel, Ashutosh
    Kumar, Aditya
    ACTA BIOMATERIALIA, 2020, 107 : 286 - 298
  • [26] Machine learning approach for predicting the fracture toughness of bulk metallic glasses
    Guo, Hui
    Sun, Wenhai
    Lu, Weiyan
    Sun, Qinghui
    Wang, Mingsheng
    Xu, Limin
    PHILOSOPHICAL MAGAZINE, 2025,
  • [27] First-principles NMR of oxide glasses boosted by machine learning
    Charpentier, Thibault
    FARADAY DISCUSSIONS, 2025, 255 (00) : 370 - 390
  • [28] Machine learning versus human learning in predicting glass-forming ability of metallic glasses
    Liu, Guannan
    Sohn, Sungwoo
    Kube, Sebastian A.
    Raj, Arindam
    Mertz, Andrew
    Nawano, Aya
    Gilbert, Anna
    Shattuck, Mark D.
    O'Hern, Corey S.
    Schroers, Jan
    ACTA MATERIALIA, 2023, 243
  • [29] Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses
    Xu, Xinyi
    Han, Taihao
    Huang, Jie
    Kruger, Albert A.
    Kumar, Aditya
    Goel, Ashutosh
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (45) : 53375 - 53387
  • [30] Investigation on the serrated flow behavior of bulk metallic glasses based on machine learning
    Zhao, M. S. Z.
    Long, Z. L.
    Peng, L.
    MATERIALS RESEARCH EXPRESS, 2021, 8 (09)