Graph Topic Neural Network for Document Representation

被引:21
|
作者
Xie, Qianqian [1 ]
Huang, Jimin [1 ]
Du, Pan [2 ]
Peng, Min [1 ]
Nie, Jian-Yun [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
基金
国家重点研发计划; 美国国家科学基金会;
关键词
graph neural networks; topic models; document representation;
D O I
10.1145/3442381.3450045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) such as GCN can effectively learn document representations via the semantic relation graph among documents and words. However, despite a few exceptions, most of the previous work in this line of research does not consider the underlying topical semantics inherited in document contents and the relation graph, making the representations less effective and hard to interpret. In a few recent studies trying to incorporate latent topics into GNNs, the topics have been learned independently from the relation graph modeling. Intuitively, topic extraction can benefit much from the information propagation of the relation graph structure - directly and indirectly connected documents and words have similar topics. In this paper, we propose a novel Graph Topic Neural Network (GTNN) model to mine latent topic semantics for interpretable document representation learning, taking into account the document-document, document-word, and word-word relationships in the graph. We also show that our model can be viewed as semi-amortized inference for relational topic model based on Poisson distribution, with high order correlations. We test our model in several settings: unsupervised, semi-supervised, and supervised representation learning, for both connected and unconnected documents. In all the cases, our model outperforms the state-of-the-art models for these tasks.
引用
收藏
页码:3055 / 3065
页数:11
相关论文
共 50 条
  • [41] Learning Effective Road Network Representation with Hierarchical Graph Neural Networks
    Wu, Ning
    Zhao, Wayne Xin
    Wang, Jingyuan
    Pan, Dayan
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 6 - 14
  • [42] Learning graph representation with Randomized Neural Network for dynamic texture classification
    Ribas, Lucas C.
    de Mesquita Sa Junior, Jarbas Joaci
    Manzanera, Antoine
    Bruno, Odemir M.
    APPLIED SOFT COMPUTING, 2022, 114
  • [43] Multi-view Graph Neural Network for Fair Representation Learning
    Zhang, Guixian
    Yuan, Guan
    Cheng, Debo
    He, Ludan
    Bing, Rui
    Li, Jiuyong
    Zhang, Shichao
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 208 - 223
  • [44] A recurrent graph neural network for inductive representation learning on dynamic graphs
    Yao, Hong-Yu
    Zhang, Chun-Yang
    Yao, Zhi-Liang
    Chen, C. L. Philip
    Hu, Junfeng
    PATTERN RECOGNITION, 2024, 154
  • [45] Graph Neural Network Representation of State Space Models of Metabolic Pathways
    Aghaee, Mohammad
    Krau, Stephane
    Tamer, Melih
    Budman, Hector
    IFAC PAPERSONLINE, 2024, 58 (14): : 464 - 469
  • [46] Graph Attention Topic Modeling Network
    Yang, Liang
    Wu, Fan
    Gu, Junhua
    Wang, Chuan
    Cao, Xiaochun
    Jin, Di
    Guo, Yuanfang
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 144 - 154
  • [47] Heterogeneous Graph Neural Network With Multi-View Representation Learning
    Shao, Zezhi
    Xu, Yongjun
    Wei, Wei
    Wang, Fei
    Zhang, Zhao
    Zhu, Feida
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11476 - 11488
  • [48] DPGNN: Dual-perception graph neural network for representation learning
    Zhou, Li
    Chen, Wenyu
    Zeng, Dingyi
    Cheng, Shaohuan
    Liu, Wanlong
    Zhang, Malu
    Qu, Hong
    KNOWLEDGE-BASED SYSTEMS, 2023, 268
  • [49] A Graph Regularized Deep Neural Network for Unsupervised Image Representation Learning
    Yang, Shijie
    Li, Liang
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7053 - 7061
  • [50] Learning universal network representation via link prediction by graph convolutional neural network
    Gu W.
    Gao F.
    Li R.
    Zhang J.
    Journal of Social Computing, 2021, 2 (01): : 43 - 51