New results on the periodic solutions for a kind of Rayleigh equation with two deviating arguments

被引:12
|
作者
Huang, Chuangxia [1 ]
He, Yigang
Huang, Lihong
Tan, Wen
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Coll Math & Comp, Changsha 410076, Hunan, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[4] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
Rayleigh equation; deviating argument; periodic solution; coincidence degree;
D O I
10.1016/j.mcm.2006.11.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the help of the continuation theorem of the coincidence degree, a priori estimates, and differential inequalities, the authors make a further investigation of a class of Rayleigh equation with two deviating arguments of the form x '' + f (x'(t)) + g(1) (t, x(t - tau(1)(t))) + g(2)(t, x(t - tau(2)(t))) = p(t). Some new results on the existence of T-periodic solutions for such a system are established. Our work generalizes and improves some earlier publications. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:604 / 611
页数:8
相关论文
共 50 条
  • [21] PERIODIC SOLUTIONS FOR A LIENARD EQUATION WITH TWO DEVIATING ARGUMENTS
    Wang, Yong
    Tian, Junkang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [22] ON EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF A KIND OF RAYLEIGH EQUATION WITH A DEVIATING ARGUMENT
    Zhou, Yinggao
    Wu, Min
    APPLICATIONS OF MATHEMATICS, 2010, 55 (03) : 189 - 196
  • [23] Existence an duniquenessof periodic solutions for a kind of Rayleigh equation with a deviating argument
    Zhou, Qiyuan
    Xiao, Bing
    Yu, Yuehua
    Liu, Bingwen
    Huang, Lihong
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 673 - 682
  • [24] On existence of positive periodic solutions of a kind of Rayleigh equation with a deviating argument
    Yinggao Zhou
    Min Wu
    Applications of Mathematics, 2010, 55 : 189 - 196
  • [25] The existence and uniqueness of periodic solutions for a kind of Duffing-type equation with two deviating arguments
    Wang, Zhengxin
    Qian, Longxia
    Lu, Shiping
    Cao, Jinde
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 3034 - 3043
  • [26] Periodic solutions for a kind of second order differential equation with multiple deviating arguments
    Lu, SP
    Ge, WG
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 195 - 209
  • [27] Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments
    Zong, Minggang
    Liang, Hongzhen
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 43 - 47
  • [28] Some novel results of t-periodic solutions for rayleigh type equation with double deviating arguments
    Wang, Yong
    Tao, Zhengwu
    Tian, Donghong
    Ma, Xin
    Li, Mingjun
    Feng, Zonghong
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (01): : 55 - 68
  • [29] SOME NOVEL RESULTS OF T-PERIODIC SOLUTIONS FOR RAYLEIGH TYPE EQUATION WITH DOUBLE DEVIATING ARGUMENTS
    Wang, Yong
    Tao, Zhengwu
    Tian, Donghong
    Ma, Xin
    Li, Mingjun
    Feng, Zonghong
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (01): : 55 - 68
  • [30] PERIODIC SOLUTIONS OF DISCRETE RAYLEIGH EQUATIONS WITH DEVIATING ARGUMENTS
    Wang, Gen-Qiang
    Cheng, Sui-Sun
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (6B): : 2051 - 2067