Response of Peatland CO2 and CH4 Fluxes to Experimental Warming and the Carbon Balance

被引:20
|
作者
Li, Qian [1 ]
Gogo, Sebastien [1 ]
Leroy, Fabien [1 ]
Guimbaud, Christophe [2 ]
Laggoun-Defarge, Fatima [1 ]
机构
[1] Univ Orleans, Inst Sci Terre Orleans, CNRS, BRGM,UMR 7327, Orleans, France
[2] Univ Orleans, Lab Phys & Chim Environm & Espace LPC2E, CNRS, UMR 7328, Orleans, France
关键词
CO2; fluxes; methane emissions; carbon budget; climate warming; peatland; METHANE FLUX; TEMPERATURE SENSITIVITY; VEGETATION; SPHAGNUM; EMISSIONS; ECOSYSTEM; FEN; SEQUESTRATION; DECOMPOSITION; ACCUMULATION;
D O I
10.3389/feart.2021.631368
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The function of peatlands as a large carbon (C) reservoir results from the net C uptake under cold, wet, and acid environments. However, in the context of global warming, the balance between C input and release is expected to change, which may further alter the C sink of peatlands. To examine the response to climate warming of a temperate Sphagnum peatland which has been invaded by vascular plants, a mesocosm experiment was conducted with open top chambers (OTCs) to simulate a moderate temperature increase. Gross primary production (GPP), ecosystem respiration (ER), and methane (CH4) emissions were monitored for 2 years. The CO2 and CH4 fluxes were modeled by relating to abiotic and biotic factors, including temperature, water table depth (WTD), and vegetation, in order to calculate the annual C budget. Results showed that the annual cumulated GPP was significantly enhanced by the simulated warming (-602 compared to -501 gC m(-2) yr(-1) in OTC and control plots, respectively), mainly due to the increase of graminoid biomass by warming, while experimental warming had no significant effect on the annual ER and CH4 emissions (an output of 615 and 500 gC m(-2) yr(-1) for ER; 21 and 16 gC m(-2) yr(-1) for CH4 emissions in OTC and control plots, respectively). The annual NEE and C budget were not affected by the short-term experimental warming. The mesocosms under both treatments acted as a gaseous C source with 34 and 14 gC m(-2) yr(-1) output under OTC and control treatment, respectively. This C source was driven by the strong net carbon dioxide (CO2) release during a low WTD period in summer, as CH4 emissions only accounted for 0.9-2.2% of the total C fluxes. Our study identified the effect of moderate warming on the C fluxes, even on a short-term basis. Also, our findings highlighted that the response of C fluxes to warming largely depends on the WTD and vegetation composition. Thus, long-term monitoring of hydrology and vegetation change under climate warming is essential to examine their interactions in determining the C fluxes in peatlands.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] CO2 and CH4 isotope compositions and production pathways in a tropical peatland
    Holmes, M. Elizabeth
    Chanton, Jeffrey P.
    Tfaily, Malak M.
    Ogram, Andrew
    GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (01) : 1 - 18
  • [22] Patterns and Drivers of CO2 and CH4 Fluxes in an Urbanized River Network and Their Response to Restoration
    Li, Lingling
    Yan, Renhua
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2024, 129 (11)
  • [23] Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation
    Updegraff, K
    Bridgham, SD
    Pastor, J
    Weishampel, P
    Harth, C
    ECOLOGICAL APPLICATIONS, 2001, 11 (02) : 311 - 326
  • [24] Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates
    Lee, Yun-Je
    Kawamura, Taro
    Yamamoto, Yoshitaka
    Yoon, Ji-Ho
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2012, 57 (12): : 3543 - 3548
  • [25] Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates
    Khan, Muhammad Saad
    Yaqub, Sana
    Manner, Naathiya
    Karthwathi, Nur Ani
    Qasim, Ali
    Mellon, Nurhayati Binti
    Lal, Bhajan
    3RD INTERNATIONAL CONFERENCE ON SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR), 2018, 344
  • [26] Interannual variability of carbon dioxide (CO2) and methane (CH4) fluxes in a rewetted temperate bog
    Satriawan, Tin W.
    Nyberg, Marion
    Lee, Sung-Ching
    Christen, Andreas
    Black, T. Andrew
    Johnson, Mark S.
    Nesic, Zoran
    Merkens, Markus
    Knox, Sara H.
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 342
  • [27] Measurements of CO2 and CH4 evasion from UK peatland headwater streams
    Billett, M. F.
    Harvey, F. H.
    BIOGEOCHEMISTRY, 2013, 114 (1-3) : 165 - 181
  • [28] Resolving the Carbon-Climate Feedback Potential of Wetland CO2 and CH4 Fluxes in Alaska
    Ma, Shuang
    Bloom, A. Anthony
    Watts, Jennifer D.
    Quetin, Gregory R.
    Donatella, Zona
    Euskirchen, Eugenie S.
    Norton, Alexander J.
    Yin, Yi
    Levine, Paul A.
    Braghiere, Renato K.
    Parazoo, Nicholas C.
    Worden, John R.
    Schimel, David S.
    Miller, Charles E.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2023, 37 (09)
  • [29] Measurements of CO2 and CH4 evasion from UK peatland headwater streams
    M. F. Billett
    F. H. Harvey
    Biogeochemistry, 2013, 114 : 165 - 181
  • [30] Balance of CO2/CH4 exchange sorption in a coal briquette
    Dutka, Barbara
    Kudasik, Mateusz
    Pokryszka, Zbigniew
    Skoczylas, Norbert
    Topolnicki, Juliusz
    Wierzbicki, Miroslaw
    FUEL PROCESSING TECHNOLOGY, 2013, 106 : 95 - 101