THE SPLIT COMMON NULL POINT PROBLEM AND HALPERN-TYPE STRONG CONVERGENCE THEOREM IN HILBERT SPACES

被引:0
|
作者
Alofi, A. S. [1 ]
Alsulami, Saud M. [1 ]
Takahashi, W. [1 ,2 ,3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
关键词
Equilibrium problem; fixed point; inverse-strongly monotone mapping; iteration procedure; maximal monotone operator; resolvent; split common null point problem; NONEXPANSIVE-MAPPINGS; FIXED-POINTS; MONOTONE MAPPINGS; ITERATIVE METHOD; WEAK; APPROXIMATION; OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on recent works by Byrne-Censor-Gibali-Reich [C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775] and third author [W. Takahashi, Strong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802], we obtain a Halpern-type strong convergence theorem for finding a solution of the split common null point problem for three maximal monotone mappings which is related to the split feasibility problem by Censor and Elfying [Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239]. The solution of the split common null point problem is characterized as a unique solution of the variational inequality of a nonlinear operator. As applications, we get two new strong convergence theorems which are connected with the split common null point problem and an equilibrium problem.
引用
收藏
页码:775 / 789
页数:15
相关论文
共 50 条
  • [41] STRONG CONVERGENCE OF HALPERN-TYPE PROJECTION SUBGRADIENT ALGORITHMS WITH LINEAR SEARCH FOR SPLIT EQUILIBRIUM PROBLEMS
    Yao, Yonghong
    Postolache, Mihai
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (02) : 363 - 373
  • [42] The split common null point problem in Banach spaces
    Wataru Takahashi
    Archiv der Mathematik, 2015, 104 : 357 - 365
  • [43] The split common null point problem in Banach spaces
    Takahashi, Wataru
    ARCHIV DER MATHEMATIK, 2015, 104 (04) : 357 - 365
  • [44] A Halpern-Type Iteration for Solving the Split Feasibility Problem and the Fixed Point Problem of Bregman Relatively Nonexpansive Semigroup in Banach Spaces
    Cholamjiak, Prasit
    Sunthrayuth, Pongsakorn
    FILOMAT, 2018, 32 (09) : 3211 - 3227
  • [45] Modified inertia Halpern method for split null point problem in Banach spaces
    Abass, Hammed Anuoluwapo
    Ugwunnadi, Godwin
    Narain, Ojen
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (03): : 613 - 637
  • [46] Convergence theorem for system of pseudomonotone equilibrium and split common fixed point problems in Hilbert spaces
    Lateef Olakunle Jolaoso
    Gafari Abiodun Lukumon
    Maggie Aphane
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 403 - 428
  • [47] Convergence theorem for system of pseudomonotone equilibrium and split common fixed point problems in Hilbert spaces
    Jolaoso, Lateef Olakunle
    Lukumon, Gafari Abiodun
    Aphane, Maggie
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 403 - 428
  • [48] Split Common Null Point and Common Fixed Point Problems Between Banach Spaces and Hilbert Spaces
    Eslamian, M.
    Eskandani, G. Zamani
    Raeisi, M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [49] Split Common Null Point and Common Fixed Point Problems Between Banach Spaces and Hilbert Spaces
    M. Eslamian
    G. Zamani Eskandani
    M. Raeisi
    Mediterranean Journal of Mathematics, 2017, 14
  • [50] Parallel iterative methods for solving the generalized split common null point problem in Hilbert spaces
    Simeon Reich
    Truong Minh Tuyen
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114