COUNTING SOLUTIONS TO RANDOM CNF FORMULAS

被引:6
|
作者
Galanis, Andreas [1 ]
Goldberg, Leslie Ann [1 ]
Guo, Heng [2 ]
Yang, Kuan [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[2] Univ Edinburgh, Sch Informat, Informat Forum, Edinburgh EH8 9AB, Midlothian, Scotland
[3] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai 200240, Peoples R China
基金
欧洲研究理事会;
关键词
random k-SAT; approximate counting; satisfiability; RANDOM K-SAT; NUMBER; THRESHOLDS; UNIQUENESS; COLORINGS; ALGORITHM; WALKSAT;
D O I
10.1137/20M1351527
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give the first efficient algorithm to approximately count the number of solutions in the random k-SAT model when the density of the formula scales exponentially with k. The best previous counting algorithm for the permissive version of the model was due to Montanari and Shah and was based on the correlation decay method, which works up to densities (1 + o(k)(1)) 2 log k/k , the Gibbs uniqueness threshold for the model. Instead, our algorithm harnesses a recent technique by Moitra to work for random formulas with much higher densities. The main challenge in our setting is to account for the presence of high-degree variables whose marginal distributions are hard to control and which cause significant correlations within the formula.
引用
收藏
页码:1701 / 1738
页数:38
相关论文
共 50 条
  • [21] Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time
    Krivelevich, Michael
    Vilenchik, Dan
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 454 - +
  • [22] Witnesses for non-satisfiability of dense random 3CNF formulas
    Feige, Uriel
    Kim, Jeong Han
    Ofek, Eran
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 497 - 506
  • [23] Generalizations of matched CNF formulas
    Stefan Szeider
    Annals of Mathematics and Artificial Intelligence, 2005, 43 : 223 - 238
  • [24] Linear CNF formulas and satisfiability
    Porschen, Stefan
    Speckenmeyer, Ewald
    Zhao, Xishun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1046 - 1068
  • [25] Maximal Satisfiable CNF Formulas
    Porschen, Stefan
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 240 - 245
  • [26] Generalizations of matched CNF formulas
    Szeider, S
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2005, 43 (1-4) : 223 - 238
  • [27] Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas
    Doerr, Benjamin
    Neumann, Frank
    Sutton, Andrew M.
    ALGORITHMICA, 2017, 78 (02) : 561 - 586
  • [28] Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas
    Benjamin Doerr
    Frank Neumann
    Andrew M. Sutton
    Algorithmica, 2017, 78 : 561 - 586
  • [29] Length of prime implicants and number of solutions of random CNF formulae
    Boufkhad, Y
    Dubois, O
    THEORETICAL COMPUTER SCIENCE, 1999, 215 (1-2) : 1 - 30
  • [30] Probabilities of first-order sentences on sparse random relational structures: An application to definability on random CNF formulas
    Alberto Larrauri, Lazaro
    JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (02) : 444 - 472