A new quasi-Monte Carlo algorithm for numerical integration of smooth functions

被引:0
|
作者
Atanassov, EI [1 ]
Dimov, IT [1 ]
Durchova, MK [1 ]
机构
[1] Bulgarian Acad Sci, Cent Lab Parallel Proc, BU-1113 Sofia, Bulgaria
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bachvalov proved that the optimal order of convergence of a Monte Carlo method for numerical integration of functions with bounded k(th)order derivatives is [GRAPHICS] where s is the dimension. We construct a new Monte Carlo algorithm with such rate of convergence, which adapts to the variations of the sub-integral function and gains substantially in accuracy, when a low-discrepancy sequence is used instead of pseudo-random numbers. Theoretical estimates of the worst-case error of the method are obtained. Experimental results, showing the excellent parallelization properties of the algorithm and its applicability to problems of moderately high dimension, are also presented.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [22] Quasi-Monte Carlo methods in numerical finance
    Joy, C
    Boyle, PP
    Tan, KS
    MANAGEMENT SCIENCE, 1996, 42 (06) : 926 - 938
  • [23] Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II
    Karl Entacher
    BIT Numerical Mathematics, 1998, 38 : 283 - 292
  • [24] Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II
    Entacher, K
    BIT, 1998, 38 (02): : 283 - 292
  • [25] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Atanassov, Emanouil
    Karaivanova, Aneta
    Gurov, Todor
    Ivanovska, Sofiya
    Durchova, Mariya
    Dimitrov, Dimitar Sl
    EARTH SCIENCE INFORMATICS, 2010, 3 (04) : 289 - 296
  • [26] Quasi-Monte Carlo integration in unanchored Sobolev spaces
    Fialova, Jana
    MATHEMATICA SLOVACA, 2014, 64 (05) : 1135 - 1144
  • [27] A quasi-Monte Carlo method for integration with improved convergence
    Karaivanova, A
    Dimov, I
    Ivanovska, S
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 158 - 165
  • [28] Error reduction techniques in quasi-Monte Carlo integration
    Ökten, G
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (7-8) : 61 - 69
  • [29] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Emanouil Atanassov
    Aneta Karaivanova
    Todor Gurov
    Sofiya Ivanovska
    Mariya Durchova
    Dimitar Sl. Dimitrov
    Earth Science Informatics, 2010, 3 : 289 - 296
  • [30] Error bounds for quasi-Monte Carlo integration with nets
    Lecot, C
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 179 - 187