Non-Bipartite K-Common Graphs

被引:5
|
作者
Kral, Daniel [1 ,2 ,3 ]
Noel, Jonathan A. [2 ,4 ,5 ,6 ]
Norin, Sergey [7 ]
Volec, Jan [1 ,8 ]
Wei, Fan [9 ,10 ]
机构
[1] Masaryk Univ, Fac Informat, Botanicka 68A, Brno 60200, Czech Republic
[2] Univ Warwick, Math Inst, DIMAP, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[4] Univ Victoria, Dept Math & Stat, David Turpin Bldg A425,3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[5] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[6] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
[7] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[8] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000, Czech Republic
[9] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[10] Inst Adv Study, Sch Math, Princeton, NJ USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
05C55; 05C35; MULTIPLICITIES; CONJECTURE;
D O I
10.1007/s00493-020-4499-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph H is k-common if the number of monochromatic copies of H in a k-edge-coloring of K-n is asymptotically minimized by a random coloring. For every k, we construct a connected non-bipartite k-common graph. This resolves a problem raised by Jagger, Stovicek and Thomason [20]. We also show that a graph H is k-common for every k if and only if H is Sidorenko and that H is locally k-common for every k if and only if H is locally Sidorenko.
引用
收藏
页码:87 / 114
页数:28
相关论文
共 50 条
  • [31] Turán numbers for non-bipartite graphs and applications to spectral extremal problems
    Fang, Longfei
    Tait, Michael
    Zhai, Mingqing
    arXiv,
  • [32] Edge-maximal θ2k+1-free non-bipartite Hamiltonian graphs of odd order
    Jaradat, M. M. M.
    Baniabedalruhman, A.
    Bataineh, M. S.
    Jaradat, A. M. M.
    Al-Rhayyel, A. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 282 - 286
  • [33] Non-bipartite Graphs with Third Largest Laplacian Eigenvalue Less Than Three
    Xiao Dong ZHANG
    Rong LUO
    ActaMathematicaSinica(EnglishSeries), 2006, 22 (03) : 917 - 934
  • [34] Edge maximal non-bipartite graphs without odd cycles of prescribed lengths
    Caccetta, L
    Jia, RZ
    GRAPHS AND COMBINATORICS, 2002, 18 (01) : 75 - 92
  • [35] Approximation algorithms for bipartite and non-bipartite matching in the plane
    Varadarajan, KR
    Agarwal, PK
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 805 - 814
  • [36] The Maximum Spectral Radius of Non-Bipartite Graphs Forbidding Short Odd Cycles
    Li, Yongtao
    Peng, Yuejian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04): : 1 - 27
  • [37] Non-bipartite graphs with third largest Laplacian eigenvalue less than three
    Zhang, Xiao Dong
    Luo, Rong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 917 - 934
  • [38] FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS
    Li, Shuchao
    Sun, Wanting
    Wei, Wei
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 959 - 986
  • [39] Edge Maximal Non-Bipartite Graphs Without Odd Cycles of Prescribed Lengths
    Louis Caccetta
    Rui-Zhong Jia
    Graphs and Combinatorics, 2002, 18 : 75 - 92
  • [40] The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    DISCRETE MATHEMATICS, 2014, 334 : 20 - 25