Multi-label Image Ranking based on Deep Convolutional Features

被引:0
|
作者
Song, Guanghui [1 ,2 ]
Jin, Xiaogang [1 ]
Chen, Genlang [2 ]
Nie, Yan [3 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Inst Technol, Ningbo, Zhejiang, Peoples R China
[3] Ningbo Univ, Coll Sci & Technol, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
feature learning; deep convolutional neural network; multi-label ranking;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-label image ranking has many important applications in the real world, and it includes two core issues: image feature extraction approach and multi-label ranking algorithm. The existing works are mainly focused on the improvement of multi-label ranking algorithm based on the conventional visual features. Recently, image features extracted from the deep convolutional neural network have achieved impressive performance for a variety of vision tasks. Using these deep features as image representations have gained more and more attention on multi-label ranking problem. In this study, we evaluate the performance of the deep features using two baseline multi-label ranking algorithms. First, the deep convolutional neural network model pre-trained on ImageNet is fine-tuned to the target dataset. Second, the global deep features of raw image are extracted from the fine-tuned model and serve as the input data of ranking algorithms. Finally, experiments using the Tasmania Coral Point Count dataset demonstrate that the deep features enhance the expression ability in comparison with that of conventional visual features, and they can effectively improve multi-label ranking performance.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [11] A Unified Modular Framework with Deep Graph Convolutional Networks for Multi-label Image Recognition
    Lin, Qifan
    Chen, Zhaoliang
    Wang, Shiping
    Guo, Wenzhong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 54 - 65
  • [12] A BASELINE FOR MULTI-LABEL IMAGE CLASSIFICATION USING AN ENSEMBLE OF DEEP CONVOLUTIONAL NEURAL NETWORKS
    Wang, Qian
    Jia, Ning
    Breckon, Toby P.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 644 - 648
  • [13] Deep Multi-Label Hashing for Image Retrieval
    Zhong, Xian
    Li, Jiachen
    Huang, Wenxin
    Xie, Liang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1245 - 1251
  • [14] A Multi-label Scene Categorization Model Based on Deep Convolutional Neural Network
    Zhao, Gaofeng
    Luo, Wang
    Cui, Yang
    Fan, Qiang
    Peng, Qiwei
    Kong, Zhen
    Zhu, Liang
    Zhang, Tai
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS, 2020, 517 : 128 - 135
  • [15] Ranking based multi-label classification for sentiment analysis
    Chen, Dengbo
    Rong, Wenge
    Zhang, Jianfei
    Xiong, Zhang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (02) : 2177 - 2188
  • [16] Deep Co-Image-Label Hashing for Multi-Label Image Retrieval
    Shen, Xiaobo
    Dong, Guohua
    Zheng, Yuhui
    Lan, Long
    Tsang, Ivor
    Sun, Quan-Sen
    IEEE Transactions on Multimedia, 2022, 24 : 1116 - 1126
  • [17] Deep Co-Image-Label Hashing for Multi-Label Image Retrieval
    Shen, Xiaobo
    Dong, Guohua
    Zheng, Yuhui
    Lan, Long
    Tsang, Ivor
    Sun, Quan-Sen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1116 - 1126
  • [18] Multi-label Supervised Manifold Ranking for Multi-instance Image Retrieval
    Zeng, Xianhua
    Lv, Renjie
    Lian, Hao
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 423 - 431
  • [19] Multi-Label Classification using Deep Convolutional Neural Network
    Lydia, A. Agnes
    Francis, E. Sagayaraj
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [20] Multi-label image recognition based on adaptive multi-scale graph convolutional network
    Wang X.-S.
    Rong X.-L.
    Cheng Y.-H.
    Chen Z.-S.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (07): : 1737 - 1744