60-GHz Low-Noise VGA and Interpolation-Based Gain Cell in a 40-nm CMOS Technology

被引:31
|
作者
Wang, Bindi [1 ]
Gao, Hao [1 ]
van Dommele, A. Rainier [1 ]
Matters-Kammerer, Marion K. [1 ]
Baltus, Peter G. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Mixed Signal Microelect Grp, NL-5600 MB Eindhoven, Netherlands
关键词
Beamforming; CMOS; 5G; low noise amplifier (LNA); millimeter wave (mm-wave); phased array; receiver; 60; GHz; variable gain amplifier (VGA); PHASE-SHIFTER; FRONT-END; AMPLIFIER; POWER; LNA; DESIGN;
D O I
10.1109/TMTT.2018.2889058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the design and measurement of an interpolation-based low noise and variable gain cell (IBA-cell) in the 60-GHz band, using a 40-nm CMOS technology. The interpolation-based gain cell is designed for an innovative analog beamforming front end, where the array pattern is not only controlled in the phase domain, but also wins the flexibility in the magnitude domain. The circuit specifications are first derived for the application at 60 GHz. Techniques to combine low noise figure (NF) with variable gain tuning are presented focusing on the NF and linearity (IIP3) on the example of a 60-GHz low noise amplifier and variable gain amplifier. Subsequently, the design and measurement of the whole gain cell (IBA-cell) integrated into a single chip are reported with the technique of a cross-coupled feedback loop to reduce the phase variations over the gain tuning states and enhance the variations of IIP3. The IBA-cell achieves 15.8-dB maximum gain and 6.5-dB NF at 57 GHz with the gain tuning range from -2 to 15.8 dB and IIP3 varying from -11.3 to -16 dBm over the gain control range. The IBA-cell consumes a dc power of maximum 54 mA from 1.1 V.
引用
收藏
页码:518 / 532
页数:15
相关论文
共 50 条
  • [21] A 60-GHz SPST Switch in 65-nm CMOS Technology
    Apriyana, Anak Agung Alit
    Zhang, Yue Ping
    2014 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT): SILICON TECHNOLOGY HEATS UP FOR THZ, 2014,
  • [22] A 260 GHz Low Phase Noise VCO in 40 nm CMOS Technology
    Zhou, Zhongliang
    Li, Qin
    2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
  • [23] A Low-Noise Area-Efficient Chopped VCO-Based CTDSM for Sensor Applications in 40-nm CMOS
    Tu, Chih-Chan
    Wang, Yu-Kai
    Lin, Tsung-Hsien
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (10) : 2523 - 2532
  • [24] 38/60-GHz Dual-Frequency 3-Stage Transformer-Based Differential Inductor-Peaked Rectifier in 40-nm CMOS Technology
    Fang, Yun
    Hueber, Gernot
    Gao, Hao
    IEEE SOLID-STATE CIRCUITS LETTERS, 2021, 4 : 174 - 177
  • [25] 38/60-GHz Dual-Frequency 3-Stage Transformer-Based Differential Inductor-Peaked Rectifier in 40-nm CMOS Technology
    Fang, Yun
    Hueber, Gernot
    Gao, Hao
    IEEE Solid-State Circuits Letters, 2021, 4 : 174 - 177
  • [26] 60-GHz low-power OOK transmitter in 65-NM CMOS technology
    Lee, Hui Dong
    Kang, Tae Young
    Lee, Moon-Sik
    Park, Bonghyuk
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (08) : 1977 - 1980
  • [27] A 60 GHz Cascode Variable-Gain Low-Noise Amplifier With Phase Compensation in a 0.13 μm CMOS Technology
    Kim, Youngmin
    Kwon, Youngwoo
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (07) : 372 - 374
  • [28] Poster: Design Consideration of 60 GHz Low Power Low-noise Amplifier in 65 nm CMOS
    Chen, Zhe
    Gao, Hao
    van Dommele, Rainier
    Milosevic, Dusan
    Baltus, Peter G. M.
    2016 IEEE SYMPOSIUM ON COMMUNICATIONS AND VEHICULAR TECHNOLOGY IN THE BENELUX (SCVT), 2016,
  • [29] Cryogenic Characterization of Low-Frequency Noise in 40-nm CMOS
    Kiene, Gerd
    Ilik, Sadik
    Mastrodomenico, Luigi
    Babaie, Masoud
    Sebastiano, Fabio
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 573 - 580
  • [30] 60-GHZ PSEUDOMORPHIC-MODFET LOW-NOISE MMIC AMPLIFIERS
    METZE, GM
    CORNFELD, A
    CARLSON, E
    DAHROOGE, G
    CHANG, E
    SINGER, J
    BASS, J
    HUNG, HL
    LEE, T
    IEEE ELECTRON DEVICE LETTERS, 1989, 10 (04) : 165 - 167