Biomimetic Metal-Free Hydride Donor Catalysts for CO2 Reduction

被引:19
|
作者
Ilic, Stefan [1 ,2 ]
Gesiorski, Jonathan L. [1 ]
Weerasooriya, Ravindra B. [1 ,2 ]
Glusac, Ksenija D. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
ORGANOCATALYTIC TRANSFER HYDROGENATION; ELECTROCHEMICAL REDUCTION; THERMODYNAMIC HYDRICITY; KINETIC HYDRICITY; CARBON; COMPLEXES; AFFINITIES; ABILITIES; CHEMICALS; CYCLE;
D O I
10.1021/acs.accounts.1c00708
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The catalytic reduction of carbon dioxide to fuels and value-added chemicals is of significance for the development of carbon recycling technologies. One of the main challenges associated with catalytic CO2 reduction is product selectivity: the formation of carbon monoxide, molecular hydrogen, formate, methanol, and other products occurs with similar thermodynamic driving forces, making it difficult to selectively reduce CO2 to the target product. Significant scientific effort has been aimed at the development of catalysts that can suppress the undesired hydrogen evolution reaction and direct the reaction toward the selective formation of the desired products, which are easy to handle and store. Inspired by natural photosynthesis, where the CO2 reduction is achieved using NADPH cofactors in the Calvin cycle, we explore biomimetic metal-free hydride donors as catalysts for the selective reduction of CO2 to formate. Here, we outline our recent findings on the thermodynamic and kinetic parameters that control the hydride transfer from metalfree hydrides to CO2. By experimentally measuring and theoretically calculating the thermodynamic hydricities of a range of metal-free hydride donors, we derive structural and electronic factors that affect their hydride-donating abilities. Two dominant factors that contribute to the stronger hydride donors are identified to be (i) the stabilization of the positive charge formed upon HT via aromatization or by the presence of electron-donating groups and (ii) the destabilization of hydride donors through the anomeric effect or in the presence of significant structural constrains in the hydride molecule. Hydride donors with appropriate thermodynamic hydricities were reacted with CO2, and the formation of the formate ion (the first reduction step in CO2 reduction to methanol) was confirmed experimentally, providing an important proof of principle that organocatalytic CO2 reduction is feasible. The kinetics of hydride transfer to CO2 were found to be slow, and the sluggish kinetics were assigned in part to the large self-exchange reorganization energy associated with the organic hydrides in the DMSO solvent. Finally, we outline our approaches to the closure of the catalytic cycle via the electrochemical and photochemical regeneration of the hydride (R-H) from the conjugate hydride acceptors (R+). We illustrate how proton-coupled electron transfer can be efficiently utilized not only to lower the electrochemical potential at which the hydride regeneration takes place but also to suppress the unwanted dimerization that neutral radical intermediates tend to undergo. Overall, this account provides a summary of important milestones achieved in organocatalytic CO2 reduction and provides insights into the future research directions needed for the discovery of inexpensive catalysts for carbon recycling.
引用
收藏
页码:844 / 856
页数:13
相关论文
共 50 条
  • [21] Metal-Free Catalysts for Oxygen Reduction Reaction
    Dai, Liming
    Xue, Yuhua
    Qu, Liangti
    Choi, Hyun-Jung
    Baek, Jong-Beom
    CHEMICAL REVIEWS, 2015, 115 (11) : 4823 - 4892
  • [22] Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction
    Mohamed, Aya Gomaa Abdelkader
    Huang, Yiyin
    Xie, Jiafang
    Borse, Rahul Anil
    Parameswaram, Ganji
    Wang, Yaobing
    NANO TODAY, 2020, 33
  • [23] Efficient photocatalytic reduction of CO2 to formate by a molecular noble metal-free system
    Zhang, Lihua
    Chen, Lingjing
    Shi, Huatian
    Wei, Yue
    Chen, Gui
    Lau, Tai-Chu
    SCIENCE CHINA-CHEMISTRY, 2025, 68 (01) : 152 - 156
  • [24] Synthesis of metal-free benzimidazole-based catalysts and its application in CO2 cycloaddition
    Lin L.
    Yang H.
    Li S.
    Liu Y.
    Zhi Y.
    Shan S.
    Xu J.
    Environmental Science and Pollution Research, 2024, 31 (32) : 45204 - 45216
  • [25] Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides
    Lan, Dong-Hui
    Fan, Na
    Wang, Ying
    Gao, Xian
    Zhang, Ping
    Chen, Lang
    Au, Chak-Tong
    Yin, Shuang-Feng
    CHINESE JOURNAL OF CATALYSIS, 2016, 37 (06) : 826 - 845
  • [26] The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction
    Kato, Shunsuke
    Matam, Santhosh Kumar
    Kerger, Philipp
    Bernard, Laetitia
    Battaglia, Corsin
    Vogel, Dirk
    Rohwerder, Michael
    Zuttel, Andreas
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) : 6028 - 6032
  • [27] Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4
    Li, Wanlu
    Seredych, Mykola
    Rodriguez-Castellon, Enrique
    Bandosz, Teresa J.
    CHEMSUSCHEM, 2016, 9 (06) : 606 - 616
  • [28] Metal Cluster Catalysts for Electrochemical CO2 Reduction
    Dinh, Khac Huy
    Menisa, Leta Takele
    Warkentin, Hugh
    Nguyen, Tu N.
    Dinh, Cao-Thang
    ACS CATALYSIS, 2025, 15 (07): : 5731 - 5759
  • [29] Noble metal-free catalysts for oxygen reduction reaction
    Huang, Xiaoxiao
    Wang, Yazhou
    Li, Wei
    Hou, Yanglong
    SCIENCE CHINA-CHEMISTRY, 2017, 60 (12) : 1494 - 1507
  • [30] Noble metal-free catalysts for oxygen reduction reaction
    Xiaoxiao Huang
    Yazhou Wang
    Wei Li
    Yanglong Hou
    Science China Chemistry, 2017, 60 : 1494 - 1507