Fractal dimensions of chaotic saddles of dynamical systems

被引:44
|
作者
Hunt, BR
Ott, E
Yorke, JA
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimensions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic transient. As an example, the formula is applied to the physically interesting situation of filtering of data from chaotic systems.
引用
收藏
页码:4819 / 4823
页数:5
相关论文
共 50 条
  • [31] Understanding Chaotic Dynamical Systems
    Young, Lai-Sang
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (09) : 1439 - 1463
  • [32] Maximally chaotic dynamical systems
    Savvidy, George
    ANNALS OF PHYSICS, 2020, 421
  • [33] Chaos in driven Alfven systems: unstable periodic orbits and chaotic saddles
    Chian, A. C. -L.
    Santana, W. M.
    Rempel, E. L.
    Borotto, F. A.
    Hada, T.
    Kamide, Y.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (01) : 17 - 29
  • [34] Fractal boundaries in chaotic hamiltonian systems
    Viana, R. L.
    Mathias, A. C.
    Marcus, F. A.
    Kroetz, T.
    Caldas, I. L.
    XVIII BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, 2017, 911
  • [35] FRACTAL AND CHAOTIC DYNAMICS IN NERVOUS SYSTEMS
    KING, CC
    PROGRESS IN NEUROBIOLOGY, 1991, 36 (04) : 279 - 308
  • [36] Local Dimensions and Quantization Dimensions in Dynamical Systems
    Mrinal Kanti Roychowdhury
    Bilel Selmi
    The Journal of Geometric Analysis, 2021, 31 : 6387 - 6409
  • [37] Local Dimensions and Quantization Dimensions in Dynamical Systems
    Roychowdhury, Mrinal Kanti
    Selmi, Bilel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6387 - 6409
  • [38] Fractal analysis of hyperbolic saddles with applications
    Crnkovic, Vlatko
    Huzak, Renato
    Resman, Maja
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [39] ACCESSIBLE SADDLES ON FRACTAL BASIN BOUNDARIES
    ALLIGOOD, KT
    YORKE, JA
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 : 377 - 400
  • [40] HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC
    LAI, YC
    GREBOGI, C
    YORKE, JA
    KAN, I
    NONLINEARITY, 1993, 6 (05) : 779 - 797