Multiplicity and concentration of solutions to the nonlinear magnetic Schrodinger equation

被引:34
|
作者
Ji, Chao [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
POSITIVE SOLUTIONS; SEMICLASSICAL STATES; ELLIPTIC PROBLEMS; BOUND-STATES; POINTS; GROWTH;
D O I
10.1007/s00526-020-01772-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following nonlinear magnetic Schrodinger equation where epsilon is a positive parameter, and V : RN. R, A : RN. RN are continuous potentials. Under a local assumption on the potential V, by combining variationalmethods, penalization techniques, and the Ljusternik-Schnirelmann theory, we prove multiplicity and concentration properties of solutions for e > 0 small. In our problem, the function f is only continuous, which allows to consider larger classes of nonlinearities in the reaction.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [42] Multiplicity and Concentration Results for a Magnetic Schrodinger Equation With Exponential Critical Growth in R2
    d'Avenia, Pietro
    Ji, Chao
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 862 - 897
  • [43] Multiplicity and concentration results for magnetic relativistic Schrodinger equations
    Xia, Aliang
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1161 - 1186
  • [44] Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrodinger equation
    D'Aprile, Teresa
    Pistoia, Angela
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1423 - 1451
  • [45] Envelope solutions to nonlinear Schrodinger equation
    Li, XZ
    Zhang, JL
    Wang, YM
    Wang, ML
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4045 - 4051
  • [46] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [47] ANTISYMMETRIC SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (1-2) : 109 - 134
  • [48] Autoresonant solutions of the nonlinear Schrodinger equation
    Friedland, L
    PHYSICAL REVIEW E, 1998, 58 (03): : 3865 - 3875
  • [49] On effective solutions of the nonlinear Schrodinger equation
    Khatiashvili, N.
    Shanidze, R.
    Janjgava, D.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [50] Threshold solutions for the nonlinear Schrodinger equation
    Campos, Luccas
    Farah, Luiz Gustavo
    Roudenko, Svetlana
    REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1637 - 1708