Multi-label Learning with Incomplete Class Assignments

被引:0
|
作者
Bucak, Serhat Selcuk [1 ]
Jin, Rong [1 ]
Jain, Anil K. [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci & Eng, E Lansing, MI 48824 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a special type of multi-label learning where class assignments of training examples are incomplete. As an example, an instance whose true class assignment is (c(1), c(2), c(3)) is only assigned to class c1 when it is used as a training sample. We refer to this problem as multi-label learning with incomplete class assignment. Incompletely labeled data is frequently encountered when the number of classes is very large (hundreds as in MIR Flickr dataset) or when there is a large ambiguity between classes (e.g., jet vs plane). In both cases, it is difficult for users to provide complete class assignments for objects. We propose a ranking based multi-label learning framework that explicitly addresses the challenge of learning from incompletely labeled data by exploiting the group lasso technique to combine the ranking errors. We present a learning algorithm that is empirically shown to be efficient for solving the related optimization problem. Our empirical study shows that the proposed framework is more effective than the state-of-the-art algorithms for multi-label learning in dealing with incompletely labeled data.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Compact Multi-Label Learning
    Shen, Xiaobo
    Liu, Weiwei
    Tsang, Ivor W.
    Sun, Quan-Sen
    Ong, Yew-Soon
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4066 - 4073
  • [32] Multi-label Ensemble Learning
    Shi, Chuan
    Kong, Xiangnan
    Yu, Philip S.
    Wang, Bai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 223 - 239
  • [33] Privileged Multi-label Learning
    You, Shan
    Xu, Chang
    Wang, Yunhe
    Xu, Chao
    Tao, Dacheng
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3336 - 3342
  • [34] Copula Multi-label Learning
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [35] On the consistency of multi-label learning
    Gao, Wei
    Zhou, Zhi-Hua
    ARTIFICIAL INTELLIGENCE, 2013, 199 : 22 - 44
  • [36] Multi-Label Manifold Learning
    Hou, Peng
    Geng, Xin
    Zhang, Min-Ling
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1680 - 1686
  • [37] Multi-label Crowdsourcing Learning
    Li S.-Y.
    Jiang Y.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1497 - 1510
  • [38] Fast Multi-label Learning
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2432 - 2438
  • [39] Partial Multi-Label Learning
    Xie, Ming-Kun
    Huang, Sheng-Jun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4302 - 4309
  • [40] A multi-view multi-label learning with incomplete data and self-adaptive correlations
    Zhu, Changming
    Han, Liju
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,