Electrochemical Amorphization As a Method to Increase the Rate Capability of Crystalline Silicon Anodes for Lithium-Ion Batteries

被引:1
|
作者
Li, G. V. [1 ]
Astrova, E. V. [1 ]
Rumyantsev, A. M. [1 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
lithium-ion batteries; silicon anodes; macroporous silicon; rate capability; galvanostatic cycling test; LITHIATION; INSERTION;
D O I
10.1134/S1063785019110257
中图分类号
O59 [应用物理学];
学科分类号
摘要
Anodes manufactured from macroporous silicon have been studied. Galvanostatic cycling tests in half-cells with Li counterelectrode in a regime of charging capacity limited to Q(1) = 1000 mAh/g showed that the inclusion of a modifying cycle with increased time of electrochemical lithiation into the testing schedule allowed the charge/discharge rate to be increased upon return to the initial regime. The results are interpreted in terms of a two-phase model with a sharp a-LixSi/c-Si interface. The insertion of a large amount of lithium during the modifying cycle leads to an increase in the thickness of an amorphous layer, within which the insertion and extraction of lithium in subsequent cycles proceed at a higher rate.
引用
收藏
页码:1131 / 1135
页数:5
相关论文
共 50 条
  • [31] Improved rate capability of Si-C composite anodes by boron doping for lithium-ion batteries
    Yi, Ran
    Zai, Jiantao
    Dai, Fang
    Gordin, Mikhail L.
    Wang, Donghai
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 36 : 29 - 32
  • [32] Stable Silicon Anodes for Lithium-Ion Batteries Using Mesoporous Metallurgical Silicon
    Li, Xiaopeng
    Yan, Chenglin
    Wang, Junna
    Graff, Andreas
    Schweizer, Stefan L.
    Sprafke, Alexander
    Schmidt, Oliver G.
    Wehrspohn, Ralf B.
    ADVANCED ENERGY MATERIALS, 2015, 5 (04)
  • [33] Characterization of anodes for lithium-ion batteries
    R. M. Humana
    M. G. Ortiz
    J. E. Thomas
    S. G. Real
    M. Sedlarikova
    J. Vondrak
    A. Visintin
    Journal of Solid State Electrochemistry, 2016, 20 : 1053 - 1058
  • [34] SPINEL ANODES FOR LITHIUM-ION BATTERIES
    FERG, E
    GUMMOW, RJ
    DEKOCK, A
    THACKERAY, MM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) : L147 - L150
  • [35] Characterization of anodes for lithium-ion batteries
    Humana, R. M.
    Ortiz, M. G.
    Thomas, J. E.
    Real, S. G.
    Sedlarikova, M.
    Vondrak, J.
    Visintin, A.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (04) : 1053 - 1058
  • [36] Synthesis and electrochemical properties of nickel oxide as anodes for lithium-ion batteries
    Ortiz, Mariela G.
    Visintin, Arnaldo
    Real, Silvia G.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 883
  • [37] Crystalline silicon gels as anode material for lithium-ion batteries
    Flores-Lopez, S. L.
    Santos-Gomez, L. D.
    Rey-Raap, N.
    Camean, I.
    Garcia, A. B.
    Arenillas, A.
    Garcia-Granda, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E96 - E97
  • [38] Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries
    Ramdhiny, Masytha Nuzula
    Jeon, Ju-Won
    CARBON ENERGY, 2024, 6 (04)
  • [39] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [40] Silicon Nanowires as Anodes for Lithium-Ion Batteries: Full Cell Modeling
    Kilchert, Franziska
    Schammer, Max
    Latz, Arnulf
    Horstmann, Birger
    ENERGY TECHNOLOGY, 2024, 12 (06)