A Modulated Voltage Waveform for Enhancing the Travel Range of Dielectric Elastomer Actuators

被引:28
|
作者
Arora, Nitesh [1 ]
Kumar, Pramod [1 ]
Joglekar, M. M. [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttar Pradesh, India
关键词
dielectric elastomer actuator; limit cycle; modulated voltage; hyper-elastic model; travel range enhancement; INSTABILITY; PERFORMANCE;
D O I
10.1115/1.4041039
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a method to achieve high deformability levels in dielectric elastomer actuators (DEAs) by applying a modulated voltage waveform. The method relies on supplying the electrostatic energy during the specific phase of the oscillation cycle, resulting in the enhanced travel range at a relatively low driving voltage. We consider a standard sandwich configuration of the DE actuator with neo-Hookean material model and outline an energy-based approach for delineating the underlying principles of the proposed method. A comparison of the deformability levels achieved using the quasi-static, Heaviside step, and the modulated input waveforms is presented. Significant reduction in instability voltages together with a considerable increase in the stable actuation limit is observed in the case of the modulated voltage input. The estimates of the stability thresholds are validated by integrating the equation of motion obtained using Hamilton's principle. The effect of energy dissipation is assessed by considering variations in the quality factor. Further, a qualitative comparison with experimental observations is presented highlighting the practical feasibility of the method. This investigation can find its potential use in the design and development of DEAs subjected to a time-dependent motion.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Lifetime of dielectric elastomer stack actuators
    Lotz, Peter
    Matysek, Marc
    Schlaak, Helmut F.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2011, 2011, 7976
  • [32] Characterization of dielectric elastomer planar actuators
    Carpi, F
    Mazzoldi, A
    De Rossi, D
    Chiarelli, P
    SENSORS AND MICROSYSTEMS, 2002, : 33 - 39
  • [33] Dielectric elastomer actuators: materials and design
    Bersudnov, Igor, V
    Khmelnitskaya, Alina G.
    Kalinina, Aleksandra A.
    Ponomarenko, Sergey A.
    RUSSIAN CHEMICAL REVIEWS, 2023, 92 (02)
  • [34] Electromechanical coupling in dielectric elastomer actuators
    Wissler, Michael
    Mazza, Edoardo
    SENSORS AND ACTUATORS A-PHYSICAL, 2007, 138 (02) : 384 - 393
  • [35] Design and Modeling of Dielectric Elastomer Actuators
    Kaal, W.
    Herold, S.
    Melz, T.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2012, 2012, 8340
  • [36] Monolithic Stacked Dielectric Elastomer Actuators
    Shintake, Jun
    Ichige, Daiki
    Kanno, Ryo
    Nagai, Toshiaki
    Shimizu, Keita
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [37] Contractile folded dielectric elastomer actuators
    Carpi, F.
    De Rossi, D.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2007, 2007, 6524
  • [38] Challenges in the Microfabrication of Dielectric Elastomer Actuators
    Balakrisnan, Bavani
    Smela, Elisabeth
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010, 2010, 7642
  • [39] Balloon actuators based on the dielectric elastomer
    Zhang, Hui
    Wang, Yingxi
    Zhu, Jian
    Zhang, Zhisheng
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2017, : 654 - 658
  • [40] Interfacing dielectric elastomer actuators with liquids
    Poulin, Alexandre
    Maffli, Luc
    Rosset, Samuel
    Shea, Herbert
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2015, 2015, 9430