Radio-Frequency Flexible Transistors on Cellulose Nanofibrillated Fiber (CNF) Substrates

被引:0
|
作者
Seo, Jung-Hun [1 ]
Chang, Tzu-Hsuan [1 ]
Sabo, Ronald [2 ]
Cai, Zhiyong [2 ]
Gong, Shaoqin [3 ]
Ma, Zhenqiang [1 ]
机构
[1] Dept Elect & Comp Engn, Madison, WI 53726 USA
[2] USDA, Forest Prod Lab, Madison, WI 53726 USA
[3] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53706 USA
来源
2015 IEEE 15TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF) | 2015年
关键词
Cellulose nanofibrillated fiber; Si nanomembranes; bio-degradable and flexible device; SILICON NANOMEMBRANES; ELECTRONICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
RF performance flexible thin-film transistors toward green portable devices were realized. The cellulose nanofibrillated fiber (CNF) substrate combined with Si nanomembranes (Si NMs) printing technique enables to fabricate flexible, high-speed and bio-degradable devices. Flexible Si NM thin-film transistors (TFTs) built on the CNF substrate show mobility of 336 cm/v.s and f(T) and f(max) of 2.4 GHz and 5.1 GHz, respectively. This demonstration paves the path to entire green portable devices so as to generate less waste and save more valuable resources.
引用
收藏
页码:83 / 85
页数:3
相关论文
共 50 条
  • [21] Radio-frequency transistors from millimeter-scale graphene domains
    Wei Zi-Jun
    Fu Yun-Yi
    Liu Jing-Bo
    Wang Zi-Dong
    Jia Yue-Hui
    Guo Jian
    Ren Li-Ming
    Chen Yuan-Fu
    Zhang Han
    Huang Ru
    Zhang Xing
    CHINESE PHYSICS B, 2014, 23 (11)
  • [22] Characterising and modelling thermal behaviour of radio-frequency power LDMOS transistors
    Collantes, JM
    Bouysse, P
    Quere, R
    ELECTRONICS LETTERS, 1998, 34 (14) : 1428 - 1430
  • [23] Stability of radio-frequency graphene field-effect transistors in ambient
    Wang, Zidong
    Zhang, Qingping
    Wei, Zijun
    Peng, Pei
    Tian, Zhongzheng
    Ren, Liming
    Zhang, Xing
    Huang, Ru
    Wen, Jincai
    Fu, Yunyi
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (05)
  • [24] Radio-frequency transistors from millimeter-scale graphene domains
    魏子钧
    傅云义
    刘竞博
    王紫东
    贾越辉
    郭剑
    任黎明
    陈远富
    张酣
    黄如
    张兴
    Chinese Physics B, 2014, (11) : 474 - 479
  • [25] Current and noise expressions for radio-frequency single-electron transistors
    Oh, JH
    Ahn, D
    Hwang, SW
    PHYSICAL REVIEW B, 2005, 72 (16)
  • [26] Characterization of flexible radio-frequency spiral inductors on a plastic substrate
    Qin, Guoxuan
    Liu, Hao
    Xu, Yanmeng
    Dang, Mengjiao
    Ma, Jianguo
    Ma, Zhenqiang
    Chen, Xuejiao
    Luo, Tao
    IEICE ELECTRONICS EXPRESS, 2016, 13 (20):
  • [27] Highly Bendable Piezoelectric Resonators for Flexible Radio-Frequency Electronics
    Zhang, Lin
    Gao, Chuanhai
    Jiang, Yuan
    Liu, Bohua
    Zhang, Menglun
    Zhang, Hongxiang
    Li, Quanning
    Chen, Xuejiao
    Pang, Wei
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (01)
  • [28] Radio-Frequency Operation of Transparent Nanowire Thin-Film Transistors
    Dattoli, Eric N.
    Kim, Kuk-Hwan
    Fung, Wayne Y.
    Choi, Seok-Youl
    Lu, Wei
    IEEE ELECTRON DEVICE LETTERS, 2009, 30 (07) : 730 - 732
  • [29] Wavelength division multiplexing scheme for radio-frequency single electron transistors
    Stevenson, TR
    Pellerano, FA
    Stahle, CM
    Aidala, K
    Schoelkopf, RJ
    LOW TEMPERATURE DETECTORS, 2002, 605 : 289 - 292
  • [30] Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates
    Ye, Hongke
    Randall, Christina L.
    Leong, Timothy G.
    Slanac, Daniel A.
    Call, Emma K.
    Gracias, David H.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (26) : 4991 - 4994