Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data

被引:18
|
作者
Tomppo, Erkki [1 ]
Antropov, Oleg [1 ,2 ]
Praks, Jaan [1 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, POB 11000, Espoo 02150, Finland
[2] VTT Tech Res Ctr Finland, POB 1000, Espoo 02150, Finland
关键词
boreal forest; snow damage; synthetic aperture radar; Sentinel-1; support vector machine; improved k-NN; genetic algorithm; NEAREST NEIGHBORS TECHNIQUE; SUPPORT VECTOR MACHINES; REMOTE-SENSING DATA; L-BAND SAR; STORM DAMAGE; STEM VOLUME; LAND-COVER; CLASSIFICATION; INVENTORY; RADAR;
D O I
10.3390/rs11040384
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Natural disturbances significantly influence forest ecosystem services and biodiversity. Accurate delineation and early detection of areas affected by disturbances are critical for estimating extent of damage, assessing economical influence and guiding forest management activities. In this study we focus on snow load damage detection from C-Band SAR images. Snow damage is one of the least studied forest damages, which is getting more common due to current climate trends. The study site was located in the southern part of Northern Finland and the SAR data were represented by the time series of C-band SAR scenes acquired by the Sentinel-1 sensor. Methods used in the study included improved k nearest neighbour method, logistic regression analysis and support vector machine classification. Snow damage recordings from a large snow damage event that took place in Finland during late 2018 were used as reference data. Our results showed an overall detection accuracy of 90%, indicating potential of C-band SAR for operational use in snow damage mapping. Additionally, potential of multitemporal Sentinel-1 data in estimating growing stock volume in damaged forest areas were carried out, with obtained results indicating strong potential for estimating the overall volume of timber within the affected areas. The results and research questions for further studies are discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Mapping tree species diversity of temperate forests using multi-temporal Sentinel-1 and -2 imagery
    Xi, Yanbiao
    Zhang, Wenmin
    Brandt, Martin
    Tian, Qingjiu
    Fensholt, Rasmus
    SCIENCE OF REMOTE SENSING, 2023, 8
  • [22] SINCOHMAP: LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE
    Vicente-Guijalba, F.
    Jacob, A.
    Lopez-Sanchez, J. M.
    Lopez-Martinez, C.
    Duro, J.
    Notarnicola, C.
    Ziolkowski, D.
    Mestre-Quereda, A.
    Pottier, E.
    Mallorqui, J. J.
    Lavalle, M.
    Engdahl, M.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6631 - 6634
  • [23] A novel multi-temporal approach to wet snow retrieval with Sentinel-1 images (Conference Presentation)
    Marin, Carlo
    Callegari, Mattia
    Notarnicola, Claudia
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [24] Classification of Nemoral Forests with Fusion of Multi-Temporal Sentinel-1 and 2 Data
    Bjerreskov, Kristian Skau
    Nord-Larsen, Thomas
    Fensholt, Rasmus
    REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [25] MAPPING OF ARCTIC LANDSCAPES USING MULTI-TEMPORAL SENTINEL-1 IMAGERY: A CASE STUDY OF KOTELNY ISLAND
    Baldina, Elena
    Troshko, Ksenia
    7TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOLS 1 AND 2, 2018, : 727 - 737
  • [26] Bolvadin Subsidence Analysis with Multi-Temporal InSAR Technique and Sentinel-1 Data
    Imamoglu, Mumin
    Kahraman, Fatih
    Cakir, Ziyadin
    Sanli, Fusun Balik
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [27] Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
    Chen, Yansi
    Hou, Jinliang
    Huang, Chunlin
    Zhang, Ying
    Li, Xianghua
    REMOTE SENSING, 2021, 13 (15)
  • [28] Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping
    Moharrami, Meysam
    Attarchi, Sara
    Gloaguen, Richard
    Alavipanah, Seyed Kazem
    REMOTE SENSING, 2024, 16 (09)
  • [29] PRELIMINARY RESULTS OF TEMPORAL DEFORMATION ANALYSIS IN ISTANBUL USING MULTI-TEMPORAL INSAR WITH SENTINEL-1 SAR DATA
    Imamoglu, Mumin
    Abdikan, Saygin
    Kahraman, Fatih
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1352 - 1355
  • [30] Monitoring Hydro Temporal Variability in Alberta, Canada with Multi-Temporal Sentinel-1 SAR Data
    DeLancey, Evan R.
    Kariyeva, Jahan
    Cranston, Jerome
    Brisco, Brian
    CANADIAN JOURNAL OF REMOTE SENSING, 2018, 44 (01) : 1 - 10