Ion flux through membrane channels - An enhanced algorithm for the Poisson-Nernst-Planck model

被引:16
|
作者
Dyrka, Witold [1 ]
Augousti, Andy T. [2 ]
Kotulska, Malgorzata [1 ]
机构
[1] Wroclaw Univ Technol, Inst Biomed Engn & Instrumentat, PL-50370 Wroclaw, Poland
[2] Kingston Univ, Sch Life Sci, Surrey KT1 2EE, England
关键词
PNP; nanopore; algorithm optimization; relaxation technique; electrodiffusion;
D O I
10.1002/jcc.20947
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel algorithmic scheme for numerical solution of the 3D Poisson-Nernst-Planck model is proposed. The algorithmic improvements are universal and independent of the detailed physical model. They include three major steps: an adjustable gradient-based step value, an adjustable relaxation coefficient, and an optimized segmentation of the modeled space. The enhanced algorithm significantly accelerates the speed of computation and reduces the computational demands. The theoretical model was tested on a regular artificial channel and validated on a real protein channel-alpha-hemolysin, proving its efficiency. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1876 / 1888
页数:13
相关论文
共 50 条
  • [31] Modeling ion-specific effects in polyelectrolyte brushes: A modified Poisson-Nernst-Planck model
    Ceely, William J.
    Chugunova, Marina
    Nadim, Ali
    Sterling, James D.
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [32] A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow
    Liu, Weishi
    Xu, Hongguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1192 - 1228
  • [33] One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species
    Liu, Weishi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 428 - 451
  • [34] Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels
    Dyrka, Witold
    Bartuzel, Maciej M.
    Kotulska, Malgorzata
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (10) : 1802 - 1822
  • [35] Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model
    Rosseto, M. P.
    Evangelista, L. R.
    Lenzi, E. K.
    Zola, R. S.
    de Almeida, R. R. Ribeiro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (34): : 6446 - 6453
  • [36] A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel
    Kurnikova, MG
    Coalson, RD
    Graf, P
    Nitzan, A
    BIOPHYSICAL JOURNAL, 1999, 76 (02) : 642 - 656
  • [37] HOMOGENIZATION OF THE POISSON-NERNST-PLANCK EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS MEDIA
    Schmuck, Markus
    Bazant, Martin Z.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1369 - 1401
  • [38] A lattice relaxation algorithm for 3D Poisson-Nernst-Planck theory with application to ion transport through the Gramicidin A channel
    Kurnikova, MG
    Coalson, RD
    Graf, P
    Nitzan, A
    BIOPHYSICAL JOURNAL, 1999, 76 (01) : A211 - A211
  • [39] Electroneutral models for dynamic Poisson-Nernst-Planck systems
    Song, Zilong
    Cao, Xiulei
    Huang, Huaxiong
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [40] Steady state solution of the Poisson-Nernst-Planck equations
    Golovnev, A.
    Trimper, S.
    PHYSICS LETTERS A, 2010, 374 (28) : 2886 - 2889