Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water

被引:16
|
作者
Laureti, Stefano [1 ]
Hutchins, David A. [2 ]
Astolfi, Lorenzo [2 ]
Watson, Richard L. [2 ]
Thomas, Peter J. [2 ]
Burrascano, Pietro [3 ]
Nie, Luzhen [4 ]
Freear, Steven [4 ]
Askari, Meisam [5 ]
Clare, Adam T. [6 ]
Ricci, Marco [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst Engn, Via Pietro Bucci, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
[3] Univ Perugia, Dept Engn, Polo Sci Didatt Di Terni, Via Pentima 4, I-05100 Terni, Italy
[4] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[5] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[6] Univ Nottingham, Dept Mech Mat & Mfg Engn, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
NEGATIVE REFRACTION; ULTRASONOGRAPHY;
D O I
10.1038/s41598-020-67454-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acoustic metamaterials constructed from conventional base materials can exhibit exotic phenomena not commonly found in nature, achieved by combining geometrical and resonance effects. However, the use of polymer-based metamaterials that could operate in water is difficult, due to the low acoustic impedance mismatch between water and polymers. Here we introduce the concept of "trapped air" metamaterial, fabricated via vat photopolymerization, which makes ultrasonic sub-wavelength imaging in water using polymeric metamaterials highly effective. This concept is demonstrated for a holey-structured acoustic metamaterial in water at 200-300 kHz, via both finite element modelling and experimental measurements, but it can be extended to other types of metamaterials. The new approach, which outperforms the usual designs of these structures, indicates a way forward for exploiting additive-manufacturing for realising polymer-based acoustic metamaterials in water at ultrasonic frequencies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Supergrowth and sub-wavelength object imaging
    Karmakar, Tathagata
    Chakraborty, Abhishek
    Vamivakas, A. Nick
    Jordan, Andrew N.
    OPTICS EXPRESS, 2023, 31 (22) : 37174 - 37185
  • [22] Sub-wavelength confinement in metamaterial filled-slot waveguide
    Mironov, Evgeny G.
    Liu, Liming
    Hattori, Haroldo T.
    De La Rue, Richard M.
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [23] Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate
    Oudich, Mourad
    Li, Yong
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (31)
  • [24] Strong coupling in the sub-wavelength limit using metamaterial nanocavities
    A. Benz
    S. Campione
    S. Liu
    I. Montaño
    J.F. Klem
    A Allerman
    J.R. Wendt
    M.B. Sinclair
    F. Capolino
    I. Brener
    Nature Communications, 4
  • [25] A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders
    Arslanagic, Samel
    Breinbjerg, Olav
    OPTICS EXPRESS, 2009, 17 (18): : 16059 - 16072
  • [26] Sub-wavelength scale acoustic metamaterial based on Peano fractal
    Wu, Guanghua
    Ke, Yi-Bo
    Zhang, Lin
    Tao, Meng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (23): : 230 - 240
  • [27] Sub-wavelength air cavities in uniaxial metamaterials
    Atakaramians, Shaghik
    Kuhlmey, Boris T.
    2016 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2016, : 29 - 30
  • [28] Strong coupling in the sub-wavelength limit using metamaterial nanocavities
    Benz, A.
    Campione, S.
    Liu, S.
    Montano, I.
    Klem, J. F.
    Allerman, A.
    Wendt, J. R.
    Sinclair, M. B.
    Capolino, F.
    Brener, I.
    NATURE COMMUNICATIONS, 2013, 4
  • [29] Research of the characteristics of photonic crystals based on air holes sub-wavelength imaging
    Zhan Sheng-Gao
    Liang Bin-Ming
    Zhu Xing-Fu
    Chen Jia-Bi
    Zhuang Song-Lin
    ACTA PHYSICA SINICA, 2014, 63 (15)
  • [30] Sub-Wavelength Imaging with BC-SRRs Metamaterial Lens for 1.5-T MRI
    Hassan Ali
    Erik Forsberg
    Hu Jun
    Applied Magnetic Resonance, 2016, 47 : 539 - 554