An Investigation of Multitask Linear Genetic Programming for Dynamic Job Shop Scheduling

被引:9
|
作者
Huang, Zhixing [1 ]
Zhang, Fangfang [1 ]
Mei, Yi [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, POB 600, Wellington 6140, New Zealand
关键词
Multitask; Linear genetic programming; Hyper-heuristic; Dynamic job shop scheduling; HEURISTICS;
D O I
10.1007/978-3-031-02056-8_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic job shop scheduling has a wide range of applications in reality such as order picking in warehouse. Using genetic programming to design scheduling heuristics for dynamic job shop scheduling problems becomes increasingly common In recent years, multitask genetic programming-based hyper-heuristic methods have been developed to solve similar dynamic scheduling problem scenarios simultaneously. However, all of the existing studies focus on the tree-based genetic programming. In this paper, we investigate the use of linear genetic programming, which has some advantages over tree-based genetic programming in designing multitask methods, such as building block reusing. Specifically, this paper makes a preliminary investigation on several issues of multitask linear genetic programming. The experiments show that the linear genetic programming within multitask frameworks have a significantly better performance than solving tasks separately, by sharing useful building blocks.
引用
收藏
页码:162 / 178
页数:17
相关论文
共 50 条
  • [21] Automatic Design of Dispatching Rules with Genetic Programming for Dynamic Job Shop Scheduling
    Shady, Salama
    Kaihara, Toshiya
    Fujii, Nobutada
    Kokuryo, Daisuke
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: THE PATH TO DIGITAL TRANSFORMATION AND INNOVATION OF PRODUCTION MANAGEMENT SYSTEMS, PT I, 2020, 591 : 399 - 407
  • [22] Investigating a Machine Breakdown Genetic Programming Approach for Dynamic Job Shop Scheduling
    Park, John
    Mei, Yi
    Nguyen, Su
    Chen, Gang
    Zhang, Mengjie
    GENETIC PROGRAMMING (EUROGP 2018), 2018, 10781 : 253 - 270
  • [23] Genetic Programming with Delayed Routing for Multiobjective Dynamic Flexible Job Shop Scheduling
    Xu, Binzi
    Mei, Yi
    Wang, Yan
    Ji, Zhicheng
    Zhang, Mengjie
    EVOLUTIONARY COMPUTATION, 2021, 29 (01) : 75 - 105
  • [24] Evolving "Less- myopic" Scheduling Rules for Dynamic Job Shop Scheduling with Genetic Programming
    Hunt, Rachel
    Johnston, Mark
    Zhang, Mengjie
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 927 - 934
  • [25] Integrating genetic programming into job shop scheduling problem
    Chin, JF
    Meeran, S
    ADVANCES IN MANUFACTURING TECHNOLOGY - XVII, 2003, : 415 - 421
  • [26] Guided Subtree Selection for Genetic Operators in Genetic Programming for Dynamic Flexible Job Shop Scheduling
    Zhang, Fangfang
    Mei, Yi
    Nguyen, Su
    Zhang, Mengjie
    GENETIC PROGRAMMING, EUROGP 2020, 2020, 12101 : 262 - 278
  • [27] Genetic Programming with Multi-tree Representation for Dynamic Flexible Job Shop Scheduling
    Zhang, Fangfang
    Mei, Yi
    Zhang, Mengjie
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 472 - 484
  • [28] Genetic Programming with Multi-case Fitness for Dynamic Flexible Job Shop Scheduling
    Xu, Meng
    Zhang, Fangfang
    Mei, Yi
    Zhang, Mengjie
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [29] Genetic Programming for Dynamic Flexible Job Shop Scheduling: Evolution With Single Individuals and Ensembles
    Xu, Meng
    Mei, Yi
    Zhang, Fangfang
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (06) : 1761 - 1775
  • [30] A linear programming-based method for job shop scheduling
    Kerem Bülbül
    Philip Kaminsky
    Journal of Scheduling, 2013, 16 : 161 - 183