Deep Feature Learning for Pulmonary Nodule Classification in a Lung CT

被引:0
|
作者
Kim, Bum-Chae [1 ]
Sung, Yu Sub [2 ]
Suk, Heung-Il [1 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[2] Asan Med Ctr, Dept Radiol, Biomed Imaging Infrastruct, Seoul, South Korea
关键词
Pulmonary nodule classification; Lung cancer; Deep learning; Stacked denoising autoencoder; REPRESENTATIONS; NETWORK;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss
    Giang Son Tran
    Thi Phuong Nghiem
    Van Thi Nguyen
    Chi Mai Luong
    Burie, Jean-Christophe
    JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [42] Deep-learning Derived Features for Lung Nodule Classification with Limited Datasets
    Thammasorn, P.
    Wu, W.
    Pierce, L. A.
    Pipavath, S. N.
    Lampe, P. D.
    Houghton, A. M.
    Haynor, D. R.
    Chaovalitwongse, W. A.
    Kinahan, P. E.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [43] A Series-Based Deep Learning Approach to Lung Nodule Image Classification
    Balci, Mehmet Ali
    Batrancea, Larissa M.
    Akguller, Omer
    Nichita, Anca
    CANCERS, 2023, 15 (03)
  • [44] Towards automatic pulmonary nodule management in lung cancer screening with deep learning
    Francesco Ciompi
    Kaman Chung
    Sarah J. van Riel
    Arnaud Arindra Adiyoso Setio
    Paul K. Gerke
    Colin Jacobs
    Ernst Th. Scholten
    Cornelia Schaefer-Prokop
    Mathilde M. W. Wille
    Alfonso Marchianò
    Ugo Pastorino
    Mathias Prokop
    Bram van Ginneken
    Scientific Reports, 7
  • [45] Towards automatic pulmonary nodule management in lung cancer screening with deep learning
    Ciompi, Francesco
    Chung, Kaman
    van Riel, Sarah J.
    Setio, Arnaud Arindra Adiyoso
    Gerke, Paul K.
    Jacobs, Colin
    Scholten, Ernst Th.
    Schaefer-Prokop, Cornelia
    Wille, Mathilde M. W.
    Marchiano, Alfonso
    Pastorino, Ugo
    Prokop, Mathias
    van Ginneken, Bram
    SCIENTIFIC REPORTS, 2017, 7
  • [46] Retraction Note: An early prediction and classification of lung nodule diagnosis on CT images based on hybrid deep learning techniques
    Vijay Kumar Gugulothu
    S. Balaji
    Multimedia Tools and Applications, 2024, 83 (40) : 88555 - 88555
  • [47] Multi-scale pulmonary nodule classification with deep feature fusion via residual network
    Zhang G.
    Zhu D.
    Liu X.
    Chen M.
    Itti L.
    Luo Y.
    Lu J.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (11) : 14829 - 14840
  • [48] Robustness of Lung Nodule Classification by Radiomic Texture Feature Across CT Acquisition and Reconstruction Parameters
    Emaminejad, N.
    Hoffman, J.
    Wahi-Anwar, M.
    Kim, G.
    Brown, M.
    McNitt-Gray, M.
    MEDICAL PHYSICS, 2018, 45 (06) : E516 - E516
  • [49] Unsupervised Representation Learning for Pulmonary Nodule Classification
    Jin, Xinyu
    Zhu, Fenghao
    Li, Lanjuan
    Xia, Qi
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 362 - 365
  • [50] Comparison of Conventional and Deep Learning Based Methods for Pulmonary Nodule Segmentation in CT Images
    Rocha, Joana
    Cunha, Antonio
    Mendonca, Ana Maria
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 361 - 371