Multiple existence of solutions for coupled nonlinear Schrodinger equations

被引:5
|
作者
Hirano, Norimichi [1 ]
Shioji, Naoki [1 ]
机构
[1] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Dept Math, Yokohama, Kanagawa 240, Japan
关键词
coupled Schrodinger equations; sign changing solutions;
D O I
10.1016/j.na.2007.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the multiple existence of solutions of the coupled nonlinear Schrodinger equations {-Delta u + mu(1)u = u(3) + beta v(2)u in R-3 -Delta u + mu(2)v = v(3) + beta u(2)v in R-3 where mu(1), mu(2) and beta > 0. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3845 / 3859
页数:15
相关论文
共 50 条
  • [21] Existence and bifurcation of solutions for a double coupled system of Schrodinger equations
    Tian RuShun
    Zhang ZhiTao
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1607 - 1620
  • [22] Asymptotical solutions of coupled nonlinear Schrodinger equations with perturbations
    Cheng Xue-Ping
    Lin Ji
    Ye Li-Jun
    CHINESE PHYSICS, 2007, 16 (09): : 2503 - 2509
  • [23] On stabilization of solutions of complex coupled nonlinear Schrodinger equations
    Mahmoud, GM
    Farghaly, AAM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (06): : 845 - 866
  • [24] Special set and solutions of coupled nonlinear Schrodinger equations
    Hioe, FT
    Salter, TS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (42): : 8913 - 8928
  • [25] Mixed interaction solutions for the coupled nonlinear Schrodinger equations
    Tang, Yaning
    Zhou, Jiale
    MODERN PHYSICS LETTERS B, 2021, 35 (10):
  • [26] Solitary wave solutions of coupled nonlinear Schrodinger equations
    Erbay, Husnu A.
    Bulletin of the Technical University of Istanbul, 1994, 47 (04):
  • [27] EXISTENCE AND MULTIPLICITY OF RADIALLY SYMMETRIC SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS
    Kinoshita, Tomoharu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (02) : 667 - 692
  • [28] A note on existence of antisymmetric solutions for a class of nonlinear Schrodinger equations
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01): : 67 - 86
  • [29] EXISTENCE OF SOLUTIONS TO NONLINEAR FRACTIONAL SCHRODINGER EQUATIONS WITH SINGULAR POTENTIALS
    Wang, Qingxuan
    Zhao, Dun
    Wang, Kai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [30] Global existence of small classical solutions to nonlinear Schrodinger equations
    Ozawa, Tohru
    Zhai, Jian
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 303 - 311