T-Distribution Based BFO for Life Classification Using DNA Codon Usage Frequencies

被引:0
|
作者
Yang, Shuang [1 ]
Xu, Zhipeng [1 ]
Zou, Chen [1 ]
Liang, Gemin [1 ]
机构
[1] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
关键词
Bacterial foraging optimization; Artificial neural networks; Random forest; Life classification; T-distribution based BFO;
D O I
10.1007/978-3-031-09726-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological classification based on gene codon sequence is critical in life science research. This paper aims to improve the classification performance of conventional algorithms by integrating bacterial foraging optimization (BFO) into the classification process. To enhance the searching capability of conventional BFO, we leverage adaptive T-distribution variation to optimize the swimming step size of BFO, which is named TBFO. Different degree of freedom for t-distribution was used according to the iteration process thus to accelerate converging speed of BFO. The parameters of Artificial Neural Network and Random Forest are then optimized through the TBFO thus to enhance the classification accuracy. Comparative experiment is conducted on six standard data set of DNA codon usage frequencies. Results show that, TBFO performs better in terms of accuracy and convergence speed than PSO, WOA, GA, and BFO.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 50 条
  • [31] Addressing non-normality in multivariate analysis using the t-distribution
    Osorio, Felipe
    Galea, Manuel
    Henriquez, Claudio
    Arellano-Valle, Reinaldo
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 785 - 813
  • [32] Tsallis Entropy-Regularized Fuzzy Classification Maximum Likelihood Clustering with a t-Distribution
    Suzuki, Yuta
    Kanzawa, Yuchi
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2025, 29 (02) : 365 - 378
  • [33] Robust mixture modelling using multivariate t-distribution with missing information
    Wang, HX
    Zhang, QB
    Luo, B
    Wei, S
    PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 701 - 710
  • [34] A t-Distribution Based Operator for Enhancing Out of Distribution Robustness of Neural Network Classifiers
    Antonello, Niccolo
    Garner, Philip N.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1070 - 1074
  • [35] STD: Student's t-Distribution of Slopes for Microfacet Based BSDFs
    Ribardiere, M.
    Bringier, B.
    Meneveaux, D.
    Simonot, L.
    COMPUTER GRAPHICS FORUM, 2017, 36 (02) : 421 - 429
  • [36] Using the t-distribution to improve the absolute structure assignment with likelihood calculations
    Hooft, Rob W. W.
    Straver, Leo H.
    Spek, Anthony L.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2010, 43 : 665 - 668
  • [37] BIE using multivariant t-distribution and the iFlex method for GNSS PPP
    Duong, Viet
    Choy, Suelynn
    Rizos, Chris
    PROCEEDINGS OF THE 2021 INTERNATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION, 2021, : 454 - 464
  • [38] Improved Indoor Tracking Based on Generalized t-Distribution Noise Model
    Shuo, Liu
    Le, Yin
    Khuen, Ho Weng
    Voon, Ling Keck
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 687 - 692
  • [39] Multispectral Face Image Registration Based on T-Distribution Mixture Model
    Li Wei
    Dong Mingli
    La Naiguang
    Lou Xiaoping
    ACTA OPTICA SINICA, 2019, 39 (07)
  • [40] Analysis of local influence in geostatistics using Student's t-distribution
    Assumpcao, R. A. B.
    Uribe-Opazo, M. A.
    Galea, M.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (11) : 2323 - 2341