Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries

被引:47
|
作者
Chang, Qian [1 ,2 ]
Wei, Aijia [1 ,2 ,3 ]
Li, Wen [2 ,3 ]
Bai, Xue [2 ,3 ]
Zhang, Lihui [2 ,3 ]
He, Rui [2 ,3 ]
Liu, Zhenfa [1 ,2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Tianjin 300130, Peoples R China
[2] Hebei Acad Sci, Inst Energy Resources, Shijiazhuang 050081, Hebei, Peoples R China
[3] Hebei Engn Res Ctr Water Saving Ind, Shijiazhuang 050081, Hebei, Peoples R China
关键词
Lithium-ion batteries; Cathode material; LiNi0.5Mn1.5O4; Al2O3; modification; Electrochemical performance; ATOMIC LAYER DEPOSITION; SPINEL CATHODE; HIGH-VOLTAGE; SURFACE MODIFICATION; RATE CAPABILITY; PERFORMANCE; LIMN1.5NI0.5O4; STABILITY; MECHANISM; AL2O3;
D O I
10.1016/j.ceramint.2018.11.213
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The high-voltage spinet LiNi0.5Mn1.5O4 (LNMO) is a potential cathode material for lithium-ion batteries with outstanding energy density and power density. Here, we document a facile approach to prepare Al2O3-modified LNMO cathode materials. The Al2O3-modified LNMO materials were synthesized via a one-step solid-state reaction and then modified with Al2O3 via a wet chemical technique. The impacts of Al2O3 modification on the structure and electrochemical properties of LNMO materials were examined by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, charge-discharge tests, cyclic voltammetry measurements, electrochemical impedance spectroscopy, and aging tests. Throughout the modification process, several Al3+ were noted to substitute for Ni2+, resulting in a decrease of Mn4+ to Mn3+; this increased the electronic conductivity and lowered the electrochemical polarization of the LNMO material. An amorphous Al2O3 coating layer developed on the surface of the LNMO particles in the modification, and this could alleviate the strike of HF caused by electrolyte decomposition as well as the development of a solid electrolyte interphase. Thus, the 0.5 wt% Al2O3-modified LNMO material had decreased R-sf and R-ct and greater D-Li values with a rate capability and cycling stability better than LNMO. The rate capability was 105.6 and 83.3 mAh g(-1) at high C rates of 5 C and 7 C, as opposed to 83.3 and 54.9 mAh g(-1), respectively; the room temperature (25 degrees C) capacity retention was 92.6% at 1 C after 200 cycles, as opposed to 87.0%. The high-temperature (55 degrees C) capacity retention was 90.9% at 1 C rate after 200 cycles as opposed to 86.5%. Thus, this is an easy and feasible method to improve the electrochemical performance of LNMO cathode materials for industrialization.
引用
收藏
页码:5100 / 5110
页数:11
相关论文
共 50 条
  • [31] Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Uxa, Daniel
    Schmidt, Harald
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2022, 236 (6-8): : 979 - 989
  • [32] Synthesis and Electrochemical Characteristics of LiNi0.5Mn1.5O4 Coatings Prepared by Atmospheric Plasma Spray as Cathode Material for Lithium-Ion Batteries
    Liang, Xinghua
    Zhao, Yuchao
    DiHan
    Mao, Jie
    Lan, Lingxiao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (01): : 717 - 725
  • [33] Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries
    Zhang, Minghao
    Wang, Jun
    Xia, Yonggao
    Liu, Zhaoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 518 : 68 - 73
  • [34] Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries
    Wang, Fei
    Suo, Liumin
    Liang, Yujia
    Yang, Chongyin
    Han, Fudong
    Gao, Tao
    Sun, Wei
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2017, 7 (08)
  • [35] Controlled Preparation and Characterization of Spherical LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion Batteries
    Gao, Jian
    Li, Jianjun
    Jiang, Changyin
    Wan, Chunrong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : A899 - A902
  • [36] Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries
    Rosedhi, Nur Diyana
    Idris, Nurul Hayati
    Rahman, Md Mokhlesur
    Din, M. F. Md
    Wang, Jianli
    ELECTROCHIMICA ACTA, 2016, 206 : 374 - 380
  • [37] Dissolution of cathode-electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries
    Yoon, Taeho
    Soon, Jiyong
    Lee, Tae Jin
    Ryu, Ji Heon
    Oh, Seung M.
    JOURNAL OF POWER SOURCES, 2021, 503
  • [38] Influence of Roasting Temperature on Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode for Lithium-Ion Battery
    Niu, Lei
    Geng, Shan
    Li, Hongliang
    Du, Songli
    Cui, Xiaoling
    Li, Shiyou
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2018, 15 (02)
  • [39] A homogeneous intergrown material of LiMn2O4 and LiNi0.5Mn1.5O4 as a cathode material for lithium-ion batteries
    Wang, Jing
    Yu, Yang-yang
    Wu, Bi-he
    Lin, Wei-qing
    Li, Ji-yang
    Zhao, Jin-bao
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) : 2353 - 2360
  • [40] Synthesis and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Materials with Cr3+ and F- Composite Doping for Lithium-Ion Batteries
    Li, Jun
    Li, Shaofang
    Xu, Shuaijun
    Huang, Si
    Zhu, Jianxin
    NANOSCALE RESEARCH LETTERS, 2017, 12