Tumor microenvironment-responsive polydopamine-based core/shell nanoplatform for synergetic theranostics

被引:45
|
作者
Chen, Qian [1 ]
Shan, Xueru [1 ]
Shi, Suqing [1 ]
Jiang, Chunzhu [1 ]
Li, Tinghua [1 ]
Wei, Shanshan [1 ]
Zhang, Xinyu [1 ]
Sun, Guoying [1 ,2 ]
Liu, Jianhua [3 ]
机构
[1] Changchun Univ Technol, Sch Chem & Life Sci, Jilin Prov Key Lab Carbon Fiber Dev & Applicat, 2055 Yanan St, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Adv Inst Mat Sci, 2055 Yanan St, Changchun 130012, Peoples R China
[3] Second Hosp Jilin Univ, Dept Radiol, Changchun 130041, Peoples R China
关键词
IN-VIVO; THERAPY; NANOPARTICLES; NANOMEDICINE; AGENT; OXIDE;
D O I
10.1039/d0tb00248h
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Theranostic agents that integrate diagnostic and therapeutic modalities have drawn extensive attention due to their ability to deliver real-time imaging-guided tumor treatment. Herein, a novel core-shell polydopamine (PDA)-based theranostic agent (PDA@TA-Fe) was fabricated via a two-step strategy. Upon 808 nm and 1064 nm laser irradiation, this agent exhibited high photothermal conversion efficiencies of 29% and 41%, respectively. After endocytosis into tumor cells, the TA-Fe shell of PDA@TA-Fe gradually disintegrated in the weakly acidic tumor microenvironment (TME), and released the TA as an acidity-activated reductant that could reduce Fe3+ to Fe2+. Subsequently, the generated Fe2+ reacted with H2O2 to generate toxic hydroxyl radicals ((OH)-O-center dot) via the Fenton reaction, which induced the apoptosis of tumor cells and achieved the chemodynamic therapy (CDT). The heat produced by photothermal therapy (PTT) accelerated the (OH)-O-center dot generation to achieve a synergetic effect of CDT/PTT. In vivo tumor-xenograft imaging and therapeutic assays demonstrated obvious contrast enhancement at the tumor site in the T-1/T-2-weighted MR imaging and efficient tumor suppression achieved after the intravenous injection of this agent because of the enhanced permeation and retention (EPR) effect. This study offered a new strategy to design an "all-in-one" nanoplatform for T-1/T-2 MR imaging-guided synergistic cancer treatment of CDT/PTT.
引用
收藏
页码:4056 / 4066
页数:11
相关论文
共 50 条
  • [31] Tumor targeting and microenvironment-responsive nanoparticles for gene delivery
    Huang, Shixian
    Shao, Kun
    Kuang, Yuyang
    Liu, Yang
    Li, Jianfeng
    An, Sai
    Guo, Yubo
    Ma, Haojun
    He, Xi
    Jiang, Chen
    BIOMATERIALS, 2013, 34 (21) : 5294 - 5302
  • [32] Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications
    Uthaman S.
    Huh K.M.
    Park I.-K.
    Biomaterials Research, 22 (1)
  • [33] Reduction-Responsive Core-Shell-Corona Micelles Based on Triblock Copolymers: Novel Synthetic Strategy, Characterization, and Application As a Tumor Microenvironment-Responsive Drug Delivery System
    Zhao, Xubo
    Liu, Peng
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) : 166 - 174
  • [34] Biopolymer-based tumor microenvironment-responsive nanomedicine for targeted cancer therapy
    Jha, Abhishek
    Kumar, Manish
    Bharti, Kanchan
    Manjit, Manjit
    Mishra, Brahmeshwar
    NANOMEDICINE, 2024, 19 (07) : 633 - 651
  • [35] Tumor Microenvironment-Responsive Peptide-Based Supramolecular Drug Delivery System
    Zhang, Wenbo
    Yu, Lanlan
    Ji, Tianjiao
    Wang, Chenxuan
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [36] A tumor microenvironment-responsive Co/ZIF-8/ICG/Pt nanoplatform for chemodynamic and enhanced photodynamic antitumor therapy
    Jiang, Fan
    Zhao, Yajie
    Yang, Chunzheng
    Cheng, Ziyong
    Liu, Min
    Xing, Bengang
    Ding, Binbin
    Ma, Ping'an
    Lin, Jun
    DALTON TRANSACTIONS, 2022, 51 (07) : 2798 - 2804
  • [37] Tumor Microenvironment-Responsive Nanocarrier Based on VOx Nanozyme Amplify Oxidative Stress for Tumor Therapy
    Zhang, Fang
    Cheng, Kai
    Huang, Zhuo-Yao
    Hou, Xiao-Lin
    Zhang, Xiao-Shuai
    Zhong, Zi-Tao
    Hu, Yong-Guo
    Lei, Xiao-Ling
    Li, Yong
    Zhang, Pei-Jie
    Zhao, Yuan-Di
    Xu, Qiu-Ran
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (30)
  • [38] Hierarchical Tumor Microenvironment-Responsive Nanomedicine for Programmed Delivery of Chemotherapeutics
    Wang, Sheng
    Yu, Guocan
    Wang, Zhantong
    Jacobson, Orit
    Tian, Rui
    Lin, Li-Sen
    Zhang, Fuwu
    Wang, Jing
    Chen, Xiaoyuan
    ADVANCED MATERIALS, 2018, 30 (40)
  • [39] DNA-cloaked nanoparticles for tumor microenvironment-responsive activation
    Kim, Dongyoon
    Byun, Junho
    Kim, Se Ik
    Chung, Hyun Hoon
    Kim, Yong -Wan
    Shim, Gayong
    Oh, Yu-Kyoung
    JOURNAL OF CONTROLLED RELEASE, 2022, 350 : 448 - 459
  • [40] Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment
    Wang, Yandong
    Gao, Fucheng
    Li, Xiaofeng
    Niu, Guiming
    Yang, Yufei
    Li, Hui
    Jiang, Yanyan
    JOURNAL OF NANOBIOTECHNOLOGY, 2022, 20 (01)