Hardy-type spaces on certain noncompact manifolds and applications

被引:12
|
作者
Mauceri, G. [1 ]
Meda, S. [2 ]
Vallarino, M. [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
RIESZ TRANSFORMS; SYMMETRIC-SPACES; HEAT KERNEL; H-1-L-1; BOUNDEDNESS; SINGULAR-INTEGRALS; MULTIPLIERS; LAPLACIAN; OPERATORS; BMO; H-1;
D O I
10.1112/jlms/jdq103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a complete connected noncompact Riemannian manifold M with Ricci curvature bounded from below, positive injectivity radius and spectral gap b. We introduce a sequence X-1(M), X-2(M), ... of new Hardy spaces on M, the sequence Y-1(M), Y-2(M), ... of their dual spaces, and show that these spaces may be used to obtain endpoint estimates for purely imaginary powers of the Laplace-Beltrami operator and for more general spectral multipliers associated to the Laplace-Beltrami operator L on M. Under the additional condition that the volume of the geodesic balls of radius r is controlled by C r(alpha) e(2 root br) for some nonnegative real number alpha and for all large r, we prove also an endpoint result for the first-order Riesz transform del L-1/2. In this case, the kernels of the operators L-iu and del L-1/2 are singular both on the diagonal and at infinity. In particular, these results apply to Riemannian symmetric spaces of the noncompact type.
引用
收藏
页码:243 / 268
页数:26
相关论文
共 50 条
  • [41] On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces
    Shaolin Chen
    Saminathan Ponnusamy
    Antti Rasila
    Mathematische Zeitschrift, 2015, 279 : 163 - 183
  • [42] CHARACTERIZATIONS OF HARDY-TYPE, BERGMAN-TYPE AND DIRICHLET-TYPE SPACES ON CERTAIN CLASSES OF COMPLEX-VALUED FUNCTIONS
    Chen, Shaolin
    Rasila, Antti
    Vuorinen, Matti
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 427 - 448
  • [43] On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces
    Chen, Shaolin
    Ponnusamy, Saminathan
    Rasila, Antti
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 163 - 183
  • [45] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [46] Real Interpolation of Hardy-Type Spaces and BMO-Regularity
    Rutsky, Dmitry V.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [47] Real Interpolation of Hardy-Type Spaces an Announcement with some Remarks
    Rutsky D.V.
    Journal of Mathematical Sciences, 2020, 251 (2) : 273 - 285
  • [48] Real Interpolation of Hardy-Type Spaces and BMO-Regularity
    Dmitry V. Rutsky
    Journal of Fourier Analysis and Applications, 2020, 26
  • [49] SOME NEW ITERATED HARDY-TYPE INEQUALITIES AND APPLICATIONS
    Bernardis, A. L.
    Ortega Salvador, Pedro
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 577 - 594
  • [50] Weighted Hardy-Type Inequalities on Time Scales with Applications
    S. H. Saker
    R. R. Mahmoud
    A. Peterson
    Mediterranean Journal of Mathematics, 2016, 13 : 585 - 606