DeepVigilante: A deep learning network for real-world crime detection

被引:2
|
作者
Jan, Atif [1 ]
Khan, Gul Muhammad [1 ]
机构
[1] Univ Engn & Technol Peshawar, Elect Engn Dept, Peshawar, Pakistan
关键词
Convolutional neural network; spatio-temporal features; malicious activity detection; deep learning; ANOMALY DETECTION; LOCALIZATION; EVENTS;
D O I
10.3233/JIFS-211338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identification/recognition of assault, fighting, shooting, and vandalism from video sequence using deep 2D and 3D convolutional neural networks (CNNs) is explored in this paper. Recent wave of extensive unrestricted urbanization has not only uplifted the standard of living, but has also threatened the safety of a common man leading to an extraordinary rise in crime rate. Although Closed-circuit television (CCTV) footage provides a monitoring framework, yet, it's useless without an auto volume crime detection system. The system proposed in this work is an effort to eradicate volume crimes through accurate detection in real-time. Firstly, a fine-grained annotated dataset including instance and activity information has been developed for real-world volume crimes. Secondly, a comparison between 3D CNN and 2D CNN network has been presented to identify the malicious event from the video sequence. This is carried out to explore the significance of spatial and temporal information present in the video for event recognition. It has been observed that 2D CNN even with lesser parameters achieved a promising classification accuracy of 91.2% and Area under the curve (AUC) of 95.2% on four classes. The system also reduces false alarm rate in comparison to state-of-the-art approaches.
引用
收藏
页码:1949 / 1961
页数:13
相关论文
共 50 条
  • [31] Traffic Signs Detection for Real-World Application of an Advanced Driving Assisting System Using Deep Learning
    Riadh Ayachi
    Mouna Afif
    Yahia Said
    Mohamed Atri
    Neural Processing Letters, 2020, 51 : 837 - 851
  • [32] Traffic Signs Detection for Real-World Application of an Advanced Driving Assisting System Using Deep Learning
    Ayachi, Riadh
    Afif, Mouna
    Said, Yahia
    Atri, Mohamed
    NEURAL PROCESSING LETTERS, 2020, 51 (01) : 837 - 851
  • [33] Learning With Real-World Data
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 158 - 159
  • [34] A REFUGE FOR REAL-WORLD LEARNING
    MCFADEN, D
    NELSON, B
    EDUCATIONAL LEADERSHIP, 1995, 52 (08) : 11 - 13
  • [35] Face Recognition in Real-world Surveillance Videos with Deep Learning Method
    Wang, Ya
    Bao, Tianlong
    Ding, Chunhui
    Zhu, Ming
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 239 - 243
  • [36] Deep Offline Reinforcement Learning for Real-world Treatment Optimization Applications
    Nambiar, Mila
    Ghosh, Supriyo
    Ong, Priscilla
    Chan, Yu En
    Bee, Yong Mong
    Krishnaswamy, Pavitra
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4673 - 4684
  • [37] Myriad: a real-world testbed to bridge trajectory optimization and deep learning
    Howe, Nikolaus H.R.
    Dufort-Labbé, Simon
    Rajkumar, Nitarshan
    Bacon, Pierre-Luc
    arXiv, 2022,
  • [38] DeepEmo: Real-world Facial Expression Analysis via Deep Learning
    Deng, Weihong
    Hu, Jiani
    Zhang, Shuo
    Gao, Jun
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,
  • [39] Deep reinforcement learning for real-world quadrupedal locomotion: a comprehensive review
    Zhang, Hongyin
    He, Li
    Wang, Donglin
    INTELLIGENCE & ROBOTICS, 2022, 2 (03):
  • [40] Tackling Real-World Autonomous Driving using Deep Reinforcement Learning
    Maramotti, Paolo
    Capasso, Alessandro Paolo
    Bacchiani, Giulio
    Broggi, Alberto
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1274 - 1281