A Computer-Aided Inspection System to Predict Quality Characteristics in Food Technology

被引:1
|
作者
Torres, Juan P. [1 ]
Caro, Andres [1 ]
Del Mar Avila, Maria [1 ]
Perez-Palacios, Trinidad [2 ]
Antequera, Teresa [2 ]
Garcia Rodriguez, Pablo [1 ]
机构
[1] Univ Extremadura, Dept Comp & Telemat Syst Engn, Caceres 10003, Spain
[2] Univ Extremadura, Inst Meat & Meat Prod IProCar, Food Technol, Caceres 10003, Spain
关键词
Feature extraction; Predictive models; Prediction algorithms; Food technology; Magnetic resonance imaging; Instruments; Image color analysis; Computer-aided system; feature extraction; loin; magnetic resonance imaging; quality parameters; regressor; TVB-N CONTENT; TEXTURE CLASSIFICATION; MEAT; MRI; VISION; MATRIX; BEEF; HAM; FAT;
D O I
10.1109/ACCESS.2022.3187404
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Physicochemical and sensory analyses are commonly used to determine the quality characteristics of food samples in Food Industries. These methods are tedious, laborious, produce chemical residues, and involve the destruction of the samples. For the meat industries, this work proposes a non-invasive and non-destructive computer-aided inspection system, based on computer vision and ensemble machine learning techniques. The paper presents all the possibilities for the development of the system, making an exhaustive comparison of different algorithms used to extract features from the images of the samples, and various machine learning approaches, studying up to 6160 different models, and selecting the top 110 for the ensemble proposal. The system determines all the physicochemical, textural, and sensory quality characteristics of pork and beef loins in four meat states (fresh, thawed, cooked, and cured) with good precision, being a real alternative to the usual methods for the Food Industry.
引用
收藏
页码:71496 / 71507
页数:12
相关论文
共 50 条
  • [31] Computer-aided inspection center for magnetoimpedance spectroscopy
    Volchkov, S. O.
    Dukhan, A. E.
    Dukhan, E. I.
    Kurlyandskaya, G. V.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2016, 52 (11) : 647 - 652
  • [32] SPECIAL ISSUE ON COMPUTER-AIDED MEASUREMENT AND INSPECTION
    ASUNDI, A
    OPTICS AND LASERS IN ENGINEERING, 1995, 22 (03) : 159 - 160
  • [33] MANUAL AND COMPUTER-AIDED INSPECTION PLANNING IN PRODUCTION
    BLASING, JP
    DUTSCHKE, W
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1979, 69 (05): : 295 - 299
  • [34] Optoelectronic computer-aided inspection of thread geometry
    Galiulin, RM
    Galiulin, RM
    Bakirov, JM
    Vorontsov, A
    Yudin, AA
    SEVENTH INTERNATIONAL SYMPOSIUM ON LASER METROLOGY APPLIED TO SCIENCE, INDUSTRY, AND EVERYDAY LIFE, PTS 1 AND 2, 2002, 4900 : 633 - 636
  • [35] Computer-aided inspection center for magnetoimpedance spectroscopy
    S. O. Volchkov
    A. E. Dukhan
    E. I. Dukhan
    G. V. Kurlyandskaya
    Russian Journal of Nondestructive Testing, 2016, 52 : 647 - 652
  • [36] Computer-Aided Design/Computer-Aided Manufacturing Technology in Customized Orthodontic Appliances
    Grauer, Dan
    Wiechmann, Dirk
    Heymann, Gavin C.
    Swift, Edward J., Jr.
    JOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, 2012, 24 (01) : 3 - 9
  • [37] COMPUTER-AIDED QUALITY ASSURANCE
    WINTERHALDER, L
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1989, 79 (01): : 39 - 42
  • [38] COMPUTER-AIDED TECHNOLOGIES AND QUALITY
    WARNECKE, HJ
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1990, 80 (05): : 229 - 230
  • [39] Computer-aided detection is here: will computer-aided quality algorithms soon follow?
    McGill, Sarah K.
    ENDOSCOPY, 2022, 54 (08) : 769 - 770
  • [40] Research and development of computer aided quality inspection and control system
    Zhou, XY
    Li, FX
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE ENGINEERING: DIGITAL ENTERPRISES AND NONTRADITIONAL INDUSTRIALIZATION, 2003, : 150 - 153