On the dynamics of elastic strips

被引:55
|
作者
Goriely, A
Nizette, M
Tabor, M
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Free Univ Brussels, Brussels, Belgium
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
elastic strips; amplitude equations; localized solutions;
D O I
10.1007/s003320010009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of elastic strips, i.e., long thin rods with noncircular cross section, is analyzed by studying the solutions of the appropriate Kirchhoff equations. First, it is shown that if a naturally straight strip is deformed into a helix, the only equilibrium helical configurations are those with no internal twist and whose principal bending direction is either along the normal or the binormal. Second, the linear stability of a straight twisted strip under tension is analyzed, showing the possibility of both pitchfork and Hopf bifurcations depending on the external and geometric constraints. Third, nonlinear amplitude equations are derived describing the dynamics close to the different bifurcation regimes. Finally, special analytical solutions to these equations are used to describe the buckling of strips. In particular, finite-length solutions with a variety of boundary conditions are considered.
引用
收藏
页码:3 / 45
页数:43
相关论文
共 50 条
  • [41] Dynamic behavior of elastic strips near shape transitions
    Radisson, Basile
    Kanso, Eva
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [42] Guided and standing Bloch waves in periodic elastic strips
    Adams, Samuel D. M.
    Craster, Richard V.
    Guenneau, Sebastien
    WAVES IN RANDOM AND COMPLEX MEDIA, 2009, 19 (02) : 321 - 346
  • [43] Transient stress optimzation of elastic and viscoelastic composite strips
    Laverty, Rich
    Gazonas, George
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 1535 - 1538
  • [44] Snap-buckling in asymmetrically constrained elastic strips
    Sano, Tomohiko G.
    Wada, Hirofumi
    PHYSICAL REVIEW E, 2018, 97 (01):
  • [45] Revisited Mode-Expansion Method for Elastic Strips
    Danicki, Eugene J.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (11) : 2378 - 2386
  • [46] DYNAMICS OF DROPLETS IMPACTING ON THIN HEATED STRIPS
    YAO, SC
    HOCHREITER, LE
    CAI, KY
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1988, 110 (01): : 214 - 220
  • [47] Hemihelical local minimizers in prestrained elastic bi-strips
    Cicalese, Marco
    Ruf, Matthias
    Solombrino, Francesco
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [48] Elastic strips normalisation model for higher iris recognition performance
    Hilal, Alaa
    Beauseroy, Pierre
    Daya, Bassam
    IET BIOMETRICS, 2014, 3 (04) : 190 - 197
  • [49] Hemihelical local minimizers in prestrained elastic bi-strips
    Marco Cicalese
    Matthias Ruf
    Francesco Solombrino
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [50] LATERALLY LOADED, MODERATELY THICK, LAMINATED STRIPS ON ELASTIC FOUNDATIONS
    TURVEY, GJ
    FIBRE SCIENCE & TECHNOLOGY, 1978, 11 (04): : 257 - 273