Multipartite entanglement in spin chains and the hyperdeterminant

被引:4
|
作者
Cervera-Lierta, Alba [1 ,2 ]
Gasull, Albert [2 ]
Latorre, Jose, I [2 ,3 ]
Sierra, German [4 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona, Spain
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Barcelona, Spain
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[4] Univ Autonoma Madrid, Inst Fis Teor, CSIC, Madrid, Spain
关键词
multipartite entanglement; phase transitions; spin models; GROUND-STATE; ENTROPY;
D O I
10.1088/1751-8121/aaee1f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
way to characterize multipartite entanglement in pure states of a spin chain with n sites and local dimension d is by means of the Cayley hyperdeterminant. The latter quantity is a polynomial constructed with the components of the wave function psi(i1,...,in) which is invariant under local unitary transformation. For spin 1/2 chains (i.e. d = 2) with n = 2 and n = 3 sites, the hyperdeterminant coincides with the concurrence and the tangle respectively. In this paper we consider spin chains with n = 4 sites where the hyperdeterminant is a polynomial of degree 24 containing around 2.8 x 10(6) terms. This huge object can be written in terms of more simple polynomials S and T of degrees 8 and 12 respectively. Correspondingly we compute S, T and the hyperdeterminant for eigenstates of the following spin chain Hamiltonians: the transverse Ising model, the XXZ Heisenberg model and the Haldane-Shastry model. Those invariants are also computed for random states, the ground states of random matrix Hamiltonians in the Wigner-Dyson Gaussian ensembles and the quadripartite entangled states defined by Verstraete et al in 2002. Finally, we propose a generalization of the hyperdeterminant to thermal density matrices. We observe how these polynomials are able to capture the phase transitions present in the models studied as well as a subclass of quadripartite entanglement present in the eigenstates.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Dynamics of the entanglement spectrum in spin chains
    Torlai, G.
    Tagliacozzo, L.
    De Chiara, G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [22] Entanglement of magnon excitations in spin chains
    Jiaju Zhang
    M. A. Rajabpour
    Journal of High Energy Physics, 2022
  • [23] Entanglement of magnon excitations in spin chains
    Zhang, Jiaju
    Rajabpour, M. A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [24] Frustration, solitons, and entanglement in spin chains
    Boudreault C.
    Owerre S.A.
    Paranjape M.B.
    Physical Review B, 2023, 108 (15)
  • [25] Localizable entanglement in antiferromagnetic spin chains
    Jin, BQ
    Korepin, VE
    PHYSICAL REVIEW A, 2004, 69 (06): : 062314 - 1
  • [26] Entanglement dynamics in quantum spin chains
    Michalski, Mlosz
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 727 - 732
  • [27] Local operator entanglement in spin chains
    Mascot, Eric
    Nozaki, Masahiro
    Tezuka, Masaki
    SCIPOST PHYSICS CORE, 2023, 6 (04): : 1 - 32
  • [28] Probing multipartite entanglement in spin chain via structure factors
    Kwek, L. C.
    LASER PHYSICS, 2011, 21 (08) : 1511 - 1517
  • [29] Freezing distributed entanglement in spin chains
    D'Amico, Irene
    Lovett, Brendon W.
    Spiller, Timothy P.
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [30] Entanglement negativity in random spin chains
    Ruggiero, Paola
    Alba, Vincenzo
    Calabrese, Pasquale
    PHYSICAL REVIEW B, 2016, 94 (03)