Multipartite entanglement in spin chains and the hyperdeterminant

被引:4
|
作者
Cervera-Lierta, Alba [1 ,2 ]
Gasull, Albert [2 ]
Latorre, Jose, I [2 ,3 ]
Sierra, German [4 ]
机构
[1] Barcelona Supercomp Ctr, Barcelona, Spain
[2] Univ Barcelona, Dept Fis Quant & Astrofis, Barcelona, Spain
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[4] Univ Autonoma Madrid, Inst Fis Teor, CSIC, Madrid, Spain
关键词
multipartite entanglement; phase transitions; spin models; GROUND-STATE; ENTROPY;
D O I
10.1088/1751-8121/aaee1f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
way to characterize multipartite entanglement in pure states of a spin chain with n sites and local dimension d is by means of the Cayley hyperdeterminant. The latter quantity is a polynomial constructed with the components of the wave function psi(i1,...,in) which is invariant under local unitary transformation. For spin 1/2 chains (i.e. d = 2) with n = 2 and n = 3 sites, the hyperdeterminant coincides with the concurrence and the tangle respectively. In this paper we consider spin chains with n = 4 sites where the hyperdeterminant is a polynomial of degree 24 containing around 2.8 x 10(6) terms. This huge object can be written in terms of more simple polynomials S and T of degrees 8 and 12 respectively. Correspondingly we compute S, T and the hyperdeterminant for eigenstates of the following spin chain Hamiltonians: the transverse Ising model, the XXZ Heisenberg model and the Haldane-Shastry model. Those invariants are also computed for random states, the ground states of random matrix Hamiltonians in the Wigner-Dyson Gaussian ensembles and the quadripartite entangled states defined by Verstraete et al in 2002. Finally, we propose a generalization of the hyperdeterminant to thermal density matrices. We observe how these polynomials are able to capture the phase transitions present in the models studied as well as a subclass of quadripartite entanglement present in the eigenstates.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Multipartite entanglement in quantum spin chains
    Bruss, D
    Datta, N
    Ekert, A
    Kwek, LC
    Macchiavello, C
    PHYSICAL REVIEW A, 2005, 72 (01)
  • [2] Multipartite entanglement transfer in spin chains
    Apollaro, Tony J.G.
    Sanavio, Claudio
    Chetcuti, Wayne Jordan
    Lorenzo, Salvatore
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 384 (15):
  • [3] Multipartite entanglement transfer in spin chains
    Apollaro, Tony J. G.
    Sanavio, Claudio
    Chetcuti, Wayne Jordan
    Lorenzo, Salvatore
    PHYSICS LETTERS A, 2020, 384 (15)
  • [4] Multipartite entanglement in spin chains -: art. no. 229
    Gühne, O
    Tóth, G
    Briegel, HJ
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [5] Quantum Fisher information and multipartite entanglement in spin-1 chains
    Dell'Anna, Federico
    Pradhan, Sunny
    Boschi, Cristian Degli Esposti
    Ercolessi, Elisa
    PHYSICAL REVIEW B, 2023, 108 (14)
  • [6] Geometric measures of multipartite entanglement in finite-size spin chains
    Blasone, M.
    Dell'Anno, F.
    De Siena, S.
    Giampaolo, S. M.
    Illuminati, F.
    PHYSICA SCRIPTA, 2010, T140
  • [7] Almost perfect transmission of multipartite entanglement through disordered and noisy spin chains
    Vieira, Rafael
    Rigolin, Gustavo
    PHYSICS LETTERS A, 2020, 384 (22)
  • [8] Long-distance genuine multipartite entanglement between magnetic defects in spin chains
    Consiglio, Mirko
    Odavic, Jovan
    Bonsignori, Riccarda
    Torre, Gianpaolo
    Wiesniak, Marcin
    Franchini, Fabio
    Giampaolo, Salvatore M.
    Apollaro, Tony J. G.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [9] Persistent Multipartite Entanglement in a Quantum Spin System
    Zhou, Jiang
    Guo, Hong
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [10] Energy as a witness of multipartite entanglement in chains of arbitrary spins
    Troiani, F.
    Siloi, I.
    PHYSICAL REVIEW A, 2012, 86 (03):