Unified Ball Convergence of Inexact Methods For Finding Zeros with Multiplicity

被引:0
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Natl Inst Technol, Dept Math & Computat Sci, Mangalore 575025, Karnataka, India
关键词
Inexact method; Ball convergence; Radius of convergence; Divided difference; Derivative; Zero with multiplicity; NEWTONS METHOD; FAMILY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an extended ball convergence of inexact methods for approximating a zero of a nonlinear equation with multiplicity m; where m is a natural number. Many popular methods are special cases of the inexact method.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [1] A unified convergence framework for nonmonotone inexact decomposition methods
    Leonardo Galli
    Alessandro Galligari
    Marco Sciandrone
    Computational Optimization and Applications, 2020, 75 : 113 - 144
  • [2] A unified convergence framework for nonmonotone inexact decomposition methods
    Galli, Leonardo
    Galligari, Alessandro
    Sciandrone, Marco
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (01) : 113 - 144
  • [3] A unified local convergence analysis of inexact constrained Levenberg–Marquardt methods
    Roger Behling
    Andreas Fischer
    Optimization Letters, 2012, 6 : 927 - 940
  • [4] Convergence of composite iterative methods for finding zeros of accretive operators
    Jung, Jong Soo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1736 - 1746
  • [5] Newton-type iterative methods for finding zeros having higher multiplicity
    Jain, Pankaj
    Sethi, Kriti
    COGENT MATHEMATICS, 2016, 3
  • [6] A unified local convergence analysis of inexact constrained Levenberg-Marquardt methods
    Behling, Roger
    Fischer, Andreas
    OPTIMIZATION LETTERS, 2012, 6 (05) : 927 - 940
  • [7] On the convergence of inexact newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2015, 103 : 355 - 363
  • [8] On the convergence of inexact Newton methods
    Idema, Reijer
    Lahaye, Domenico
    Vuik, Cornelis
    Lecture Notes in Computational Science and Engineering, 2013, 103 : 355 - 363
  • [9] Unified Convergence Analysis of Chebyshev-Halley Methods for Multiple Polynomial Zeros
    Ivanov, Stoil I.
    MATHEMATICS, 2022, 10 (01)
  • [10] On semilocal convergence of inexact Newton methods
    Department of Mathematics, East China Normal University, Shanghai 200062, China
    J Comput Math, 2007, 2 (231-242):