Expansion of detectable area by floating electrodes in capacitive three-dimensional proximity sensor

被引:2
|
作者
Deguchi, M. [1 ]
机构
[1] Niihama Coll, Natl Inst Technol, 7-1 Yagumocho, Niihama, Ehime 7928580, Japan
来源
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS | 2021年 / 14卷 / 01期
关键词
Capacitive sensor; Gesture input device; 3D position sensing; Non-contact operation; Proximity sensor; Stray capacitance;
D O I
10.21307/ijssis-2021-018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the capacitive proximity sensing method, arranging multiple sensing electrodes makes it possible to obtain the three-dimensional position of a nearby object. The author has developed a capacitive proximity sensing method using LC resonance in three reactance elements. In this method, the detectable area can be greatly extended by the floating electrodes, which are capacitively connected to the sensing electrode. By connecting multiple floating electrodes in series, the detectable range can be extended up to the length of the array of floating electrodes. When these electrodes are arranged on a frame, the region surrounded by the frame becomes the detectable area. By applying this frame on any surface, it is possible to make the surface within the opening of the frame a non-contact operating panel, which can be applied as a gesture input device.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Three electrodes touch-mode capacitive pressure sensor
    K.-M. Chang
    G.-J. Hwang
    Y.-L. Hsien
    Microsystem Technologies, 1998, 5 : 93 - 99
  • [22] Three electrodes touch-mode capacitive pressure sensor
    Chang, KM
    Hwang, GJ
    Hsien, YL
    MICROSYSTEM TECHNOLOGIES, 1998, 5 (02) : 93 - 99
  • [23] Three-Dimensional Electrodes for Oxygen Electrocatalysis
    Xu, Jinxiao
    Ma, Yingjun
    Xuan, Cuijuan
    Ma, Chuanli
    Wang, Jie
    CHEMELECTROCHEM, 2022, 9 (02):
  • [24] Three-dimensional electrodes and battery architectures
    Timothy S. Arthur
    Daniel J. Bates
    Nicolas Cirigliano
    Derek C. Johnson
    Peter Malati
    James M. Mosby
    Emilie Perre
    Matthew T. Rawls
    Amy L. Prieto
    Bruce Dunn
    MRS Bulletin, 2011, 36 : 523 - 531
  • [25] Three-dimensional graphene and their integrated electrodes
    Xia, X. H.
    Chao, D. L.
    Zhang, Y. Q.
    Shen, Z. X.
    Fan, H. J.
    NANO TODAY, 2014, 9 (06) : 785 - 807
  • [26] Three-dimensional electrodes and battery architectures
    Arthur, Timothy S.
    Bates, Daniel J.
    Cirigliano, Nicolas
    Johnson, Derek C.
    Malati, Peter
    Mosby, James M.
    Perre, Emilie
    Rawls, Matthew T.
    Prieto, Amy L.
    Dunn, Bruce
    MRS BULLETIN, 2011, 36 (07) : 523 - 531
  • [27] Nondestructive three-dimensional analysis of electrode to modiolus proximity
    Husstedt, HW
    Aschendorff, A
    Richter, B
    Laszig, R
    Schumacher, M
    OTOLOGY & NEUROTOLOGY, 2002, 23 (01) : 49 - 52
  • [28] Three-Dimensional Monolithic Organic Battery Electrodes
    Ryu, Jaegeon
    Park, Byeongho
    Kang, Jieun
    Hong, Dongki
    Kim, Sung-Dae
    Yoo, Jung-Keun
    Yi, Jin Woo
    Park, Soojin
    Oh, Youngseok
    ACS NANO, 2019, 13 (12) : 14357 - 14367
  • [29] Polycrystalline diamond detectors with three-dimensional electrodes
    Lagomarsino, S.
    Bellini, M.
    Brianzi, M.
    Carzino, R.
    Cindro, V.
    Corsi, C.
    Morozzi, A.
    Passeri, D.
    Sciortino, S.
    Servoli, L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 796 : 42 - 46
  • [30] A high performance capacitive flexible pressure sensor based on three-dimensional porous rGO/PDMS composite
    Zhang, Xuefeng
    Zhang, Jiayin
    Sun, Henghao
    Wang, Zhengdong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (35)