ZnS quantum dot based nanocomposite scintillators for thermal neutron detection

被引:27
|
作者
Wang, C. L. [1 ]
Gou, L. [2 ]
Zaleski, J. M. [2 ]
Friesel, D. L. [1 ]
机构
[1] PartTec Ltd, Bloomington, IN 47404 USA
[2] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
关键词
Scintillators; Thermal neutrons; Nanocomposite; Optical properties; Track-structure model; NANOCRYSTALS; LUMINESCENT; EFFICIENCY; GLASS; IONS;
D O I
10.1016/j.nima.2010.07.032
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Water-soluble ZnS quantum dots (QDs) were synthesized using a co-precipitation method. Both undoped and Eu3+-doped ZnS QDs showed emission bands peaking at around 420 nm. The highest photoluminescence (PL) quantum yield (QY) was measured to be 17% for undoped ZnS QDs capped with SiO2. Thermal neutron induced pulse height and pulse shape spectra were measured for composites composed of (LiF)-Li-6 nanoparticles, undoped ZnS QDs, and poly(vinyl alcohol) (PVA) matrix. The pulse height spectra from the nanocomposites were analyzed with a track-structure model. The pulse decay time of scintillation photons is 10-30 ns. The fast decay rates and clear pulse height peaks induced by thermal neutrons indicate that ZnS QD based nanocomposites are promising scintillators for detecting high-flux thermal neutrons. 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:186 / 190
页数:5
相关论文
共 50 条
  • [21] Quantum dot nanocomposite polymers for radiation detection and nuclear security
    Crane, T.
    Hitchens, J.
    Macqueen, C.
    Bazin, N.
    2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [22] Progressive advancement of ZnS-based quantum dot LED
    Laxman Mandal
    Balram Vidya
    Jyoti Verma
    Piyush K. Rani
    Optical and Quantum Electronics, 2021, 53
  • [23] Progressive advancement of ZnS-based quantum dot LED
    Mandal, Laxman
    Vidya
    Verma, Balram
    Rani, Jyoti
    Patel, Piyush K.
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (01)
  • [24] Inorganic thermal-neutron scintillators
    van Eijk, CWE
    Bessière, A
    Dorenbos, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 529 (1-3): : 260 - 267
  • [25] Gd-containing scintillators for thermal neutron detection via graph-based particle discrimination
    Wang, C. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (10):
  • [26] Transparent plastic scintillators for neutron detection based on lithium salicylate
    Mabe, Andrew N.
    Glenn, Andrew M.
    Carman, M. Leslie
    Zaitseva, Natalia P.
    Payne, Stephen A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 806 : 80 - 86
  • [27] InP-Quantum-Dot-in-ZnS-Matrix Solids for Thermal and Air Stability
    Lee, Seungjin
    Sagar, Laxmi Kishore
    Li, Xiyan
    Dong, Yitong
    Chen, Bin
    Gao, Yuan
    Ma, Dongxin
    Levina, Larissa
    Grenville, Aidan
    Hoogland, Sjoerd
    de Arguer, F. Pelayo Garcia
    Sargent, Edward H.
    CHEMISTRY OF MATERIALS, 2020, 32 (22) : 9584 - 9590
  • [28] On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection
    Chang, Zheng
    Okoye, Nkemakonam C.
    Urffer, Matthew J.
    Green, Alexander D.
    Childs, Kyle E.
    Miller, Laurence F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 769 : 112 - 122
  • [29] New solid-state organic scintillators for fast and thermal neutron detection
    Zaitseva, N.
    Glenn, A.
    Mabe, A.
    Carman, L.
    Payne, S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON APPLICATIONS OF NUCLEAR TECHNIQUES (CRETE19), 2020, 50
  • [30] Gadolinium-loaded Plastic Scintillators for Thermal Neutron Detection using Compensation
    Dumazert, Jonathan
    Coulon, Romain
    Hamel, Matthieu
    Carrel, Frederick
    Sguerra, Fabien
    Normand, Stephane
    Mechin, Laurence
    Bertrand, Guillaume H. V.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (03) : 1551 - 1564