Pyrolysis Vacuum-Assisted Plasma Ionization Ion Mobility-Mass Spectrometry for Insoluble Polymer Analysis

被引:1
|
作者
Zambrzycki, Stephen C. [1 ]
Bernier, Matthew C. [1 ]
Bradshaw, James A. [2 ]
Fernandez, Facundo M. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30318 USA
[2] Consolidated Nucl Secur LLC, Y-12 Natl Secur Complex, Oak Ridge, TN 37830 USA
基金
美国能源部;
关键词
THERMAL-DEGRADATION;
D O I
10.1021/jasms.1c00109
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This Communication describes a new thermal desorption/pyrolysis vacuum-assisted plasma ionization (pyro-VaPI) ion source coupled to ion mobility-mass spectrometry (IM-MS) for insoluble polymer analysis. Pyro-VaPI combines a pyrolysis device, soft ambient plasma ionization, IM, and MS into a single platform for polymer analysis with minimal sample preparation. Nylons, a widely used and well-studied thermoplastic, were chosen to evaluate the pyro-VaPI performance. Six different nylon polymers were studied and characterized. With the application of IM-MS, two different isobars for the protonated cyclic dimers of 6-6, 6-9, 6-10, and 6-12 nylon and two isobars for the cyclic tetramer of nylon-6 were detected at 200 degrees C. These isobars were observed at different heating times, with the species drifting faster in the IM cell appearing several minutes after the slower drifting species. To the best of our knowledge, these isobaric dimers and tetramers have not been previously reported, indicating that pyro-VaPI IM-MS is a useful tool for the structural characterization of heated or pyrolyzed polymers.
引用
收藏
页码:1388 / 1392
页数:5
相关论文
共 50 条
  • [41] Profiling and imaging of tissues by imaging ion mobility-mass spectrometry
    McLean, John A.
    Ridenour, Whitney B.
    Caprioli, Richard M.
    JOURNAL OF MASS SPECTROMETRY, 2007, 42 (08): : 1099 - 1105
  • [42] Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry
    Waltman, Melanie J.
    Dwivedi, Prabha
    Hill, Herbert H., Jr.
    Blanchard, William C.
    Ewing, Robert G.
    TALANTA, 2008, 77 (01) : 249 - 255
  • [43] Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation
    May, Jody C.
    McLean, John A.
    ANALYTICAL CHEMISTRY, 2015, 87 (03) : 1422 - 1436
  • [44] Prediction of peptide drift time in ion mobility-mass spectrometry
    Wang, Bing
    Valentine, Steve
    Raghuraman, Sriram
    Plasencia, Manolo
    Zhang, Xiang
    BMC BIOINFORMATICS, 2009, 10
  • [45] Recent progress in metabolomics using ion mobility-mass spectrometry
    Levy, Allison J.
    Oranzi, Nicholas R.
    Ahmadireskety, Atiye
    Kemperman, Robin H. J.
    Wei, Michael S.
    Yost, Richard A.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 116 : 274 - 281
  • [46] THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY
    McCabe, Jacob W.
    Hebert, Michael J.
    Shirzadeh, Mehdi
    Mallis, Christopher S.
    Denton, Joanna K.
    Walker, Thomas E.
    Russell, David H.
    MASS SPECTROMETRY REVIEWS, 2021, 40 (03) : 280 - 305
  • [47] Plate-height model of ion mobility-mass spectrometry
    Grabarics, Marko
    Lettow, Maike
    Kirk, Ansgar T.
    von Helden, Gert
    Causon, Tim J.
    Pagel, Kevin
    ANALYST, 2020, 145 (19) : 6313 - 6333
  • [48] QconCAT Standard for Calibration of Ion Mobility-Mass Spectrometry Systems
    Chawner, Ross
    McCullough, Bryan
    Giles, Kevin
    Barran, Perdita E.
    Gaskell, Simon J.
    Eyers, Claire E.
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (11) : 5564 - 5572
  • [49] Characterisation of proteins and protein complexes by ion mobility-mass spectrometry
    Sobott, Frank
    CHIMICA OGGI-CHEMISTRY TODAY, 2011, 29 (02) : 20 - 24
  • [50] Characterization of Polyolefin Pyrolysis Species Produced Under Ambient Conditions by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Ion Mobility-Mass Spectrometry
    Farenc, Mathilde
    Witt, Matthias
    Craven, Kirsten
    Barrere-Mangote, Caroline
    Afonso, Carlos
    Giusti, Pierre
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (03) : 507 - 514