A nanocontact printing system for sub-100 nm aligned patterning

被引:8
|
作者
Takulapalli, Bharath R. [1 ]
Morrison, Michael E. [2 ]
Gu, Jian [1 ]
Zhang, Peiming [2 ]
机构
[1] Arizona State Univ, Biodesign Inst, Ctr Appl Nanobiosci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Inst, Ctr Single Mol Biophys, Tempe, AZ 85287 USA
关键词
IN-SITU SYNTHESIS; OLIGONUCLEOTIDE ARRAYS; NANOIMPRINT LITHOGRAPHY; DNA MICROARRAYS; ALIGNMENT; CELLS; SURFACE;
D O I
10.1088/0957-4484/22/28/285302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Though many aspects of contact printing have been explored extensively since its invention, there are still hurdles to overcome for multilayer printing in the nanometer regime. Here we report on an aligned nanocontact printing (nCP) system that has demonstrated a sub-100 nm alignment capability by means of moire fringes and microspacers. To address issues in the stamp inking, we have devised a microfluidic apparatus based on the gradient capillary force for transport of ink solutions. The nCP system has been tested by printing nucleoside phosphoramidites on a nanopillar arrayed substrate. Although the nCP system was designed primarily for use in the fabrication of high density DNA nanoarrays, it has the potential to be applied to other fields of nanotechnology for nanoscale patterning.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Low frequency noise in sub-100 nm MOSFETs
    Kramer, TA
    Pease, RFW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 19 (1-2): : 13 - 17
  • [42] Sub-100 nm IR spectromicroscopy of living cells
    Mayet, C.
    Dazzi, A.
    Prazeres, R.
    Allot, E.
    Glotin, E.
    Ortega, J. M.
    OPTICS LETTERS, 2008, 33 (14) : 1611 - 1613
  • [43] Resist requirements for sub-100 nm microlithography.
    Hinsberg, WD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U191 - U191
  • [44] Sub-100 nm2 Cobalt Interconnects
    Dutta, Shibesh
    Beyne, Sofie
    Gupta, Anshul
    Kundu, Shreya
    Bender, Hugo
    Van Elshocht, Sven
    Jamieson, Geraldine
    Vandervorst, Wilfried
    Bommels, Jurgen
    Wilson, Christopher J.
    Tokei, Zsolt
    Adelmann, Christoph
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) : 731 - 734
  • [45] Sub-100 nm Channel Length Graphene Transistors
    Liao, Lei
    Bai, Jingwei
    Cheng, Rui
    Lin, Yung-Chen
    Jiang, Shan
    Qu, Yongquan
    Huang, Yu
    Duan, Xiangfeng
    NANO LETTERS, 2010, 10 (10) : 3952 - 3956
  • [46] Sub-100 nm structures by neutral atom lithography
    Schulze, Th.
    Brezger, B.
    Schmidt, P.O.
    Mertens, R.
    Bell, A.S.
    Pfau, T.
    Mlynek, J.
    Microelectronic Engineering, 1999, 46 (01): : 105 - 108
  • [47] Hardmask technology for sub-100 nm lithographic imaging
    Babich, K
    Mahorowala, AP
    Medeiros, DR
    Pfeiffer, D
    Petrillo, K
    Angelopoulos, M
    Grill, A
    Patel, VV
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 152 - 165
  • [48] A simple method for sub-100 nm pattern generation with I-line double-patterning technique
    Tsai, Tzu-I
    Lin, Horng-Chih
    Jian, Min-Feng
    Huang, Tiao-Yuan
    Chao, Tien-Sheng
    MICROELECTRONICS RELIABILITY, 2010, 50 (05) : 584 - 588
  • [49] Design consideration of self-aligned recessed channel (RC) devices in sub-100 nm CMOS technology
    Chung, DY
    Lee, JH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2000, 37 (05) : 617 - 623
  • [50] Sub-100 nm patterning of TiO2 film for the regulation of endothelial and smooth muscle cell functions
    Muhammad, R.
    Lim, S. H.
    Goh, S. H.
    Law, J. B. K.
    Saifullah, M. S. M.
    Ho, G. W.
    Yim, E. K. F.
    BIOMATERIALS SCIENCE, 2014, 2 (12) : 1740 - 1749