Recent progresses and perspectives of VN-based materials in the application of electrochemical energy storage

被引:5
|
作者
Shi, Ling-Na [1 ]
Li, Xue-Zhong [1 ]
Cui, Lan -Tong [1 ,3 ]
Wang, Peng-Fei [3 ]
Xie, Ying [2 ,4 ]
Yi, Ting-Feng [1 ,3 ,4 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ, Harbin 150080, Peoples R China
[3] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
[4] Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao, Peoples R China
基金
中国国家自然科学基金;
关键词
VN; Electrochemical energy storage; Morphology design; Charge storage mechanism; VANADIUM NITRIDE; AMBIENT CONDITIONS; ELECTRODE MATERIALS; GRAPHENE COMPOSITE; OXYGEN REDUCTION; ANODE MATERIALS; POROUS CARBON; QUANTUM DOTS; LITHIUM; PERFORMANCE;
D O I
10.1016/j.jiec.2022.07.045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing well-behaved electrode materials is crucial for manufacturing high-performance batteries, SCs and electrocatalysis, and it is also one of the main driving forces for the development of EES devices. In consideration of the high robustness and electrical conductivity during the electrochemical reaction process, VN-based materials exhibit good performance as electrode materials (or catalytic materials) for batteries, supercapacitors, and excellent catalytic activity for electrocatalysts. Especially, the VN-based materials decorated into other active compounds with various morphologies elaborately present excellent performances due to the abundant active sites and fully synergistic effect. This review presents the structure-performance relation by designing different-dimensional nanostructures and various appli-cations of VN-based materials in electrochemical energy storage (EES) applications. Finally, the perspec-tives on future challenges and progress have been discussed. This review can offer a specific understanding for the optimization strategies of VN-based materials, thus booming the rapid develop-ment and practical applications for EES devices in the future.(c) 2022 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 76
页数:25
相关论文
共 50 条
  • [41] Lignin-based materials for electrochemical energy storage devices
    Wang, Huan
    Fu, Fangbao
    Huang, Ming
    Feng, Yunhui
    Han, Dongxue
    Xi, Yuebin
    Xiong, Wenlong
    Yang, Dongjie
    Niu, Li
    NANO MATERIALS SCIENCE, 2023, 5 (02) : 141 - 160
  • [42] Electrochemical durability of nanocrystal- based energy storage materials
    Krins, Natacha
    Singh, Ajay
    Xu, Linping
    Helms, Brett A.
    Cabana, Jordi
    Milliron, Delia J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [43] Graphene-based materials for flexible electrochemical energy storage
    Mao, Min
    Hu, Junyan
    Liu, Hongtao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (06) : 727 - 740
  • [44] Graphitic carbon nitride based materials for electrochemical energy storage
    Luo, Yuqing
    Yan, Yan
    Zheng, Shasha
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (03) : 901 - 924
  • [45] Lignin-based materials for electrochemical energy storage devices
    Huan Wang
    Fangbao Fu
    Ming Huang
    Yunhui Feng
    Dongxue Han
    Yuebin Xi
    Wenlong Xiong
    Dongjie Yang
    Li Niu
    Nano Materials Science, 2023, 5 (02) : 141 - 160
  • [46] Graphene-Based Carbon Materials for Electrochemical Energy Storage
    Liu, Fei
    Lee, Chul Wee
    Im, Ji Sun
    JOURNAL OF NANOMATERIALS, 2013, 2013
  • [47] Recent advances on MXene based materials for energy storage applications
    Long, M. Q.
    Tang, K. K.
    Xiao, J.
    Li, J. Y.
    Chen, J.
    Gao, H.
    Chen, W. H.
    Liu, C. T.
    Liu, H.
    MATERIALS TODAY SUSTAINABILITY, 2022, 19
  • [48] Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses
    Zhu, Yuxiang
    Feng, Yi
    Chen, Shuangling
    Ding, Meili
    Yao, Jianfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (48) : 25626 - 25648
  • [49] Functional materials for electrochemical energy storage
    Lu Li
    MATERIALS TECHNOLOGY, 2014, 29 (A2) : A57 - A58
  • [50] Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives
    Xu, Weili
    Zhao, Xun
    Zhan, Feiyang
    He, Qingqing
    Wang, Huayu
    Chen, Jun
    Wang, Haoyu
    Ren, Xuehua
    Chen, Lingyun
    ENERGY STORAGE MATERIALS, 2022, 53 : 79 - 135