Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources

被引:6
|
作者
Yu, Lingjie [1 ]
Yuan, Chenzhi [1 ,2 ]
Qi, Renduo [1 ]
Huang, Yidong [1 ,3 ,4 ]
Zhang, Wei [1 ,3 ,4 ]
机构
[1] Tsinghua Univ, Elect Engn Dept, Beijing Innovat Ctr Future Chips, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing 100084, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[3] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[4] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GENERATION;
D O I
10.1364/PRJ.376805
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a hybrid silicon waveguide scheme to avoid the impact of noise photons induced by pump lights in application scenarios of quantum photonic circuits with quantum light sources. The scheme is composed of strip waveguide and shallow-ridge waveguide structures. It utilizes the difference of biphoton spectra generated by spontaneous four-wave mixing (SFWM) in these two waveguides. By proper pumping setting and signal/idler wavelength selection, the generation of desired photon pairs is confined in the strip waveguide. The impact of noise photons generated by SFWM in the shallow-ridge waveguide can be avoided. Hence, the shallow-ridge waveguide could be used to realize various linear operation devices for pump light and quantum state manipulations. The feasibility of this scheme is verified by theoretical analysis and a primary experiment. Two applications are proposed and analyzed, showing its great potential in silicon-based quantum photonic circuits. (C) 2020 Chinese Laser Press
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [41] Adding quantum dots to microdisks makes silicon-based light emitters
    Xia, Jinsong
    LASER FOCUS WORLD, 2007, 43 (08): : 17 - 17
  • [42] Light Emission Due to the Quantum Confinement of Carriers in Silicon-Based Nanostructures
    Hayafuji, Yoshinori
    Ohmori, Kengo
    Igei, Kazushi
    Kambara, Nobuo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (12) : 2764 - 2772
  • [43] Broadband photonic structures for quantum light sources
    Zhe He
    Jiawei Yang
    Lidan Zhou
    Yan Chen
    Tianming Zhao
    Ying Yu
    Jin Liu
    Journal of Semiconductors, 2019, (07) : 65 - 72
  • [44] Quantum dot photonic crystal light sources
    Bhattacharya, P
    Sabarinathan, J
    Topol'Ancik, J
    Chakravarty, S
    Yu, PC
    Zhou, WD
    PROCEEDINGS OF THE IEEE, 2005, 93 (10) : 1825 - 1838
  • [45] Broadband photonic structures for quantum light sources
    He, Zhe
    Yang, Jiawei
    Zhou, Lidan
    Chen, Yan
    Zhao, Tianming
    Yu, Ying
    Liu, Jin
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (07)
  • [46] Broadband photonic structures for quantum light sources
    Zhe He
    Jiawei Yang
    Lidan Zhou
    Yan Chen
    Tianming Zhao
    Ying Yu
    Jin Liu
    Journal of Semiconductors, 2019, 40 (07) : 65 - 72
  • [47] Silicon-based quantum random number generator with untrusted sources and uncharacterized measurements
    Zhao, Zhengeng
    Hua, Xin
    Du, Yongqiang
    Xu, Chenyu
    Xie, Feng
    Zhang, Zhengrong
    Xiao, Xi
    Wei, Kejin
    OPTICS EXPRESS, 2024, 32 (22): : 38793 - 38804
  • [48] 'Quantum effects' for classical light in modern waveguide circuits
    Bogatskaya, A., V
    Kienov, N., V
    Tereshonok, M., V
    Popov, A. M.
    LASER PHYSICS LETTERS, 2019, 16 (05)
  • [49] Author Correction: Hybrid integrated quantum photonic circuits
    Ali W. Elshaari
    Wolfram Pernice
    Kartik Srinivasan
    Oliver Benson
    Val Zwiller
    Nature Photonics, 2020, 14 (5) : 336 - 336
  • [50] Silicon-based photonic integrated circuits for the mid-infrared
    Malik, Aditya
    Muneeb, Muhammad
    Radosavljevic, Sanja
    Nedeljkovic, Milos
    Penades, Jordi Soler
    Mashanovich, Goran
    Shimura, Yosuke
    Lepage, Guy
    Verheyen, Peter
    Vanherle, Wendy
    Van Opstal, Tinneke
    Loo, Roger
    Van Campenhout, Joris
    Roelkens, Gunther
    INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES (ICMAT2015) - 4TH PHOTONICS GLOBAL CONFERENCE 2015, 2016, 140 : 144 - 151