THE PARTITION ALGEBRA AND THE KRONECKER COEFFICIENTS

被引:32
|
作者
Bowman, C. [1 ]
De Visscher, M. [2 ]
Orellana, R. [3 ]
机构
[1] Inst Math Jussieu, F-75013 Paris, France
[2] City Univ London, Ctr Math Sci, London EC1V 0HB, England
[3] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
基金
英国工程与自然科学研究理事会;
关键词
IRREDUCIBLE REPRESENTATIONS; PRODUCT;
D O I
10.1090/S0002-9947-2014-06245-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new approach to study the Kronecker coefficients by using the Schur-Weyl duality between the symmetric group and the partition algebra. We explain the limiting behaviour and associated bounds in the context of the partition algebra. Our analysis leads to a uniform description of the reduced Kronecker coefficients when one of the indexing partitions is a hook or a two-part partition.
引用
收藏
页码:3647 / 3667
页数:21
相关论文
共 50 条
  • [21] On the asymptotics of Kronecker coefficients
    Laurent Manivel
    Journal of Algebraic Combinatorics, 2015, 42 : 999 - 1025
  • [22] KRONECKER PRODUCTS AND SHUFFLE ALGEBRA
    DAVIO, M
    IEEE TRANSACTIONS ON COMPUTERS, 1981, 30 (02) : 116 - 125
  • [23] PBW-basis for the composition algebra of the Kronecker algebra
    Zhang, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 527 : 97 - 116
  • [24] Computation of dilated Kronecker coefficients
    Baldoni, V.
    Vergne, M.
    Walter, M.
    JOURNAL OF SYMBOLIC COMPUTATION, 2018, 84 : 113 - 146
  • [25] ON THE COMPLEXITY OF COMPUTING KRONECKER COEFFICIENTS
    Pak, Igor
    Panova, Greta
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 1 - 36
  • [26] On the complexity of computing Kronecker coefficients
    Igor Pak
    Greta Panova
    computational complexity, 2017, 26 : 1 - 36
  • [27] A NOTE ON CERTAIN KRONECKER COEFFICIENTS
    Manivel, L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) : 1 - 7
  • [28] Vanishing symmetric Kronecker coefficients
    Ressayre, Nicolas
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (02): : 231 - 246
  • [29] Quantum Complexity of the Kronecker Coefficients
    Bravyi, Sergey
    Chowdhury, Anirban
    Gosset, David
    Havlicek, Vojtech
    Zhu, Guanyu
    PRX QUANTUM, 2024, 5 (01):
  • [30] Vanishing symmetric Kronecker coefficients
    Nicolas Ressayre
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 231 - 246