Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells

被引:11
|
作者
Zhang, Kang-Ning [1 ]
Bi, Peng-Qing [1 ]
Wen, Zhen-Chuan [1 ]
Niu, Meng-Si [1 ]
Chen, Zhi-Hao [1 ]
Wang, Tong [1 ]
Feng, Lin [1 ]
Yang, Jun-Liang [2 ]
Hao, Xiao-Tao [1 ,3 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[2] Cent S Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[3] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Organic solar cells; Charge transfer; Non-fullerene acceptors; RESONANCE ENERGY-TRANSFER; NONFULLERENE ACCEPTORS; HIGHLY EFFICIENT; PERFORMANCE; DONOR; POLY(3-HEXYLTHIOPHENE);
D O I
10.1016/j.orgel.2018.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The crystallinity of non-fullerene acceptors as the third component has an important role on nanomorphology optimization and charge transfer dynamics of ternary organic solar cells (OSCs). Herein, efficient ternary OSCs were fabricated by incorporating two typical non-fullerene acceptors with different crystallinity, (Z)-5-{[5-(15-{5-[(Z)-(3-Ethyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-8-thia-7.9-diazabicyclo [4.3.0] nona-1 (9),2,4,6-tetraen-2-yl}-9,9,18,18-tetrakis (2-ethylhexyl)-5.14-dithiapentacyclo [10.6.0.0(3,10).0(4,8).01(3,17)]octadeca-1(12),2,4(8),6,10,13 (17),15-heptaen-6-yl)-8-thia-7.9-diazabicyclo [4.3.0]nona-1 (9),2,4,6-tetraen-2-yl]methylidene}-3-ethyl-2-thioxo-1,3-thiazolidin-4-one (EH-IDTBR) or (5Z, 5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithiophene-2,7-diyl)bis (benzo [c][1,2,5]thiadiazole7,4diyl)) bis(methanylylidene))bis (3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR), into the host donor/acceptor active layers comprising of poly (3-hexythiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C71-butyric acid methylester (PC71BM). As a result, the 21.5% and 22.7% increase of the power conversion efficiency (PCE) for the two ternary systems were achieved, respectively, which was attributed to the enhanced light harvesting capability, optimized bulk-heterojunction morphology and the formation of cascade energy level alignments that could introduce an additional pathway for efficient charge transfer. Although both the short-circuit current density (Jsc) and fill factor (FF) values were increased significantly by regulating the weight ratios of non-fullerene acceptors of two ternary systems, the O-IDTBR-based ternary OSCs showed the higher Jsc while P3HT:EH-IDTBR:PC71BM system exhibited the higher FF values. The main difference of improved photovoltaic performance in the two ternary systems could be associated with the different blend morphology and charge carrier mobilities. In addition, nanomorphology studies suggested that lamellar stacking coherence lengths of P3HT in face-on orientation for EH-IDTBR- and O-IDTBR-based systems can be increased from 18.48 nm to 20.94 nm and 21.67 nm respectively, resulting from the stronger crystallinity of O-IDTBR than that of EH-IDTBR, which was beneficial for charge transport in the vertical direction. These results indicate that selecting the appropriate crystalline non-fullerene acceptors may be an effective strategy to optimize nanomorphology to further achieve high efficiency ternary OSCs.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条
  • [31] Stereoisomeric Non-Fullerene Acceptors-Based Organic Solar Cells
    Liu, Lixuan
    Yan, Yangjun
    Zhao, Shengda
    Wang, Tong
    Zhang, Wenqing
    Zhang, Jianqi
    Hao, Xiaotao
    Zhang, Yajie
    Zhang, Xinghua
    Wei, Zhixiang
    SMALL, 2024, 20 (03)
  • [32] Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells
    Markina, Anastasia
    Lin, Kun-Han
    Liu, Wenlan
    Poelking, Carl
    Firdaus, Yuliar
    Villalva, Diego Rosas
    Khan, Jafar, I
    Paleti, Sri H. K.
    Harrison, George T.
    Gorenflot, Julien
    Zhang, Weimin
    De Wolf, Stefaan
    McCulloch, Iain
    Anthopoulos, Thomas D.
    Baran, Derya
    Laquai, Frederic
    Andrienko, Denis
    ADVANCED ENERGY MATERIALS, 2021, 11 (44)
  • [33] 18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility
    Huang, Tianhuan
    Zhang, Zheling
    Wang, Dongjie
    Zhang, Yang
    Deng, Zhengqi
    Huang, Yu
    Liao, Qiaogan
    Zhang, Jian
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (05) : 3126 - 3134
  • [34] A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells
    Armin, Ardalan
    Li, Wei
    Sandberg, Oskar J.
    Xiao, Zuo
    Ding, Liming
    Nelson, Jenny
    Neher, Dieter
    Vandewal, Koen
    Shoaee, Safa
    Wang, Tao
    Ade, Harald
    Heumueller, Thomas
    Brabec, Christoph
    Meredith, Paul
    ADVANCED ENERGY MATERIALS, 2021, 11 (15)
  • [35] Non-fullerene acceptors with high crystallinity and photoluminescence quantum yield enable >20% efficiency organic solar cells
    Li, Chao
    Song, Jiali
    Lai, Hanjian
    Zhang, Huotian
    Zhou, Rongkun
    Xu, Jinqiu
    Huang, Haodong
    Liu, Liming
    Gao, Jiaxin
    Li, Yuxuan
    Jee, Min Hun
    Zheng, Zilong
    Liu, Sha
    Yan, Jun
    Chen, Xian-Kai
    Tang, Zheng
    Zhang, Chen
    Woo, Han Young
    He, Feng
    Gao, Feng
    Yan, He
    Sun, Yanming
    NATURE MATERIALS, 2025, : 433 - 443
  • [36] Scalable fabrication of organic solar cells based on non-fullerene acceptors
    Gertsen, Anders S.
    Castro, Marcial Fernandez
    Sondergaard, Roar R.
    Andreasen, Jens W.
    FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (01):
  • [37] Dilute Donor Organic Solar Cells Based on Non-fullerene Acceptors
    Mcanally, Shaun
    Jin, Hui
    Chu, Ronan
    Mallo, Neil
    Wang, Xiao
    Burn, Paul L.
    Gentle, Ian R.
    Shaw, Paul E.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28958 - 28968
  • [38] Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors
    Liu, Baiqiao
    Xu, Yunhua
    Xia, Dongdong
    Xiao, Chengyi
    Yang, Zhaofan
    Li, Weiwei
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (03) : 1 - 16
  • [39] Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors
    Zhou, Dan
    You, Wen
    Xu, Haitao
    Tong, Yongfen
    Hu, Bin
    Xie, Yu
    Chen, Lie
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (44) : 23096 - 23122
  • [40] Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells
    Cnops, Kjell
    Zango, German
    Genoe, Jan
    Heremans, Paul
    Martinez-Diaz, M. Victoria
    Torres, Tomas
    Cheyns, David
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) : 8991 - 8997