Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells

被引:11
|
作者
Zhang, Kang-Ning [1 ]
Bi, Peng-Qing [1 ]
Wen, Zhen-Chuan [1 ]
Niu, Meng-Si [1 ]
Chen, Zhi-Hao [1 ]
Wang, Tong [1 ]
Feng, Lin [1 ]
Yang, Jun-Liang [2 ]
Hao, Xiao-Tao [1 ,3 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[2] Cent S Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[3] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Organic solar cells; Charge transfer; Non-fullerene acceptors; RESONANCE ENERGY-TRANSFER; NONFULLERENE ACCEPTORS; HIGHLY EFFICIENT; PERFORMANCE; DONOR; POLY(3-HEXYLTHIOPHENE);
D O I
10.1016/j.orgel.2018.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The crystallinity of non-fullerene acceptors as the third component has an important role on nanomorphology optimization and charge transfer dynamics of ternary organic solar cells (OSCs). Herein, efficient ternary OSCs were fabricated by incorporating two typical non-fullerene acceptors with different crystallinity, (Z)-5-{[5-(15-{5-[(Z)-(3-Ethyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-8-thia-7.9-diazabicyclo [4.3.0] nona-1 (9),2,4,6-tetraen-2-yl}-9,9,18,18-tetrakis (2-ethylhexyl)-5.14-dithiapentacyclo [10.6.0.0(3,10).0(4,8).01(3,17)]octadeca-1(12),2,4(8),6,10,13 (17),15-heptaen-6-yl)-8-thia-7.9-diazabicyclo [4.3.0]nona-1 (9),2,4,6-tetraen-2-yl]methylidene}-3-ethyl-2-thioxo-1,3-thiazolidin-4-one (EH-IDTBR) or (5Z, 5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithiophene-2,7-diyl)bis (benzo [c][1,2,5]thiadiazole7,4diyl)) bis(methanylylidene))bis (3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR), into the host donor/acceptor active layers comprising of poly (3-hexythiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C71-butyric acid methylester (PC71BM). As a result, the 21.5% and 22.7% increase of the power conversion efficiency (PCE) for the two ternary systems were achieved, respectively, which was attributed to the enhanced light harvesting capability, optimized bulk-heterojunction morphology and the formation of cascade energy level alignments that could introduce an additional pathway for efficient charge transfer. Although both the short-circuit current density (Jsc) and fill factor (FF) values were increased significantly by regulating the weight ratios of non-fullerene acceptors of two ternary systems, the O-IDTBR-based ternary OSCs showed the higher Jsc while P3HT:EH-IDTBR:PC71BM system exhibited the higher FF values. The main difference of improved photovoltaic performance in the two ternary systems could be associated with the different blend morphology and charge carrier mobilities. In addition, nanomorphology studies suggested that lamellar stacking coherence lengths of P3HT in face-on orientation for EH-IDTBR- and O-IDTBR-based systems can be increased from 18.48 nm to 20.94 nm and 21.67 nm respectively, resulting from the stronger crystallinity of O-IDTBR than that of EH-IDTBR, which was beneficial for charge transport in the vertical direction. These results indicate that selecting the appropriate crystalline non-fullerene acceptors may be an effective strategy to optimize nanomorphology to further achieve high efficiency ternary OSCs.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条
  • [1] Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells
    Zhan, Lingling
    Li, Shuixing
    Zhang, Shuhua
    Chen, Xingzhi
    Lau, Tsz-Ki
    Lu, Xinhui
    Shi, Minmin
    Li, Chang-Zhi
    Chen, Hongzheng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 42444 - 42452
  • [2] Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors with Complimentary Absorption and Balanced Crystallinity
    Xie, Lan
    Yang, Chen
    Zhou, Ruimin
    Wang, Zhen
    Zhang, Jianqi
    Lu, Kun
    Wei, Zhixiang
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (09) : 935 - 940
  • [3] Functionality of Non-Fullerene Electron Acceptors in Ternary Organic Solar Cells
    Zhu, Tao
    Zheng, Luyao
    Xiao, Zuo
    Meng, Xianyi
    Liu, Lei
    Ding, Liming
    Gong, Xiong
    SOLAR RRL, 2019, 3 (12)
  • [4] Ternary organic solar cells based on non-fullerene acceptors: A review
    Chang, Lichun
    Sheng, Ming
    Duan, Leiping
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2021, 90
  • [5] Non-Fullerene Acceptors for Organic Solar Cells
    Trukhanov, V. A.
    Paraschuk, D. Yu.
    POLYMER SCIENCE SERIES C, 2014, 56 (01) : 72 - 83
  • [6] Non-fullerene acceptors for organic solar cells
    V. A. Trukhanov
    D. Yu. Paraschuk
    Polymer Science Series C, 2014, 56 : 72 - 83
  • [7] Non-fullerene acceptors for organic solar cells
    Cenqi Yan
    Stephen Barlow
    Zhaohui Wang
    He Yan
    Alex K.-Y. Jen
    Seth R. Marder
    Xiaowei Zhan
    Nature Reviews Materials, 3
  • [8] On the role of charge transfer excitations in non-fullerene acceptors for organic photovoltaics
    Giannini, Samuele
    Sowood, Daniel J. C.
    Cerda, Jesus
    Frederix, Siebe
    Gruene, Jeannine
    Londi, Giacomo
    Marsh, Thomas
    Ghosh, Pratyush
    Duchemin, Ivan
    Greenham, Neil C.
    Vandewal, Koen
    D'Avino, Gabriele
    Gillett, Alexander J.
    Beljonne, David
    MATERIALS TODAY, 2024, 80 : 308 - 326
  • [9] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [10] Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells
    Hu, Hanlin
    Deng, Wanyuan
    Qin, Minchao
    Yin, Hang
    Lau, Tsz-Ki
    Fong, Patrick W. K.
    Ren, Zhiwei
    Liang, Qiong
    Cui, Li
    Wu, Hongbin
    Lu, Xinhui
    Zhang, Weimin
    McCulloch, Iain
    Li, Gang
    MATERIALS TODAY ENERGY, 2019, 12 : 398 - 407