Uniqueness for a wave propagation inverse problem in a half-space

被引:21
|
作者
Lassas, M
Cheney, M
Uhlmann, G
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
关键词
D O I
10.1088/0266-5611/14/3/017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers an inverse problem for wave propagation in a perturbed, dissipative half-space. The perturbation is assumed to be compactly supported. This paper shows that in dimension three, the perturbation is uniquely determined by knowledge of the Dirichlet-to-Neumann map on an open subset of the boundary.
引用
收藏
页码:679 / 684
页数:6
相关论文
共 50 条
  • [31] Comparison of two different shape descriptions in the half-space inverse problem
    Tu, HC
    Chien, W
    Chiu, CC
    Hu, TM
    2005 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2005, : 156 - 159
  • [32] Inverse acoustic scattering problem in half-space with anisotropic random impedance
    Helin, Tapio
    Lassas, Matti
    Paivarinta, Lassi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (04) : 3139 - 3168
  • [33] Inverse acoustic scattering in a half-space
    Berntsen, S
    INVERSE PROBLEMS, 2003, 19 (06) : 1247 - 1262
  • [34] Numerical solution of a nonlinear wave propagation problem of thermo-magnetoelasticity for a perfectly conducting half-space
    Rawy, EK
    Ghaleb, AF
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 1999, 10 (06) : 475 - 495
  • [35] NEUMANN PROBLEM ON A HALF-SPACE
    Shu, Fumiyama
    Tanaka, Masaki
    Yanagishita, Minoru
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) : 1333 - 1345
  • [36] Magnetothermoelastic Problem Of A Half-Space
    Bhullar, S. K.
    Wegner, J. L.
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES, VOL 3, 2009, 1174 : 297 - 310
  • [37] The Neumann problem in the half-space
    Amrouche, C
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (02) : 151 - 156
  • [38] Electromagnetic-wave propagation in a half-space with a curvilinear impedance boundary
    Zaboronkova T.M.
    Kogan L.P.
    Tamoikin V.V.
    Radiophysics and Quantum Electronics, 2000, 43 (10) : 790 - 797
  • [39] ASYMMETRIC WAVE PROPAGATION IN AN ELASTIC HALF-SPACE BY A METHOD OF POTENTIALS.
    Pak, R.Y.S.
    Journal of Applied Mechanics, Transactions ASME, 1987, 54 (01): : 121 - 126
  • [40] Two-dimensional linear and nonlinear wave propagation in a half-space
    Xu, HM
    Day, SM
    Minster, JBH
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1999, 89 (04) : 903 - 917