Uncertainty optimization for robust dynamic optical flow estimation

被引:6
|
作者
Willert, Volker [1 ]
Toussaint, Marc [2 ]
Eggert, Julian [1 ]
Koerner, Edgar [1 ]
机构
[1] HRI Europe GmbH, Carl Legien Str 30, D-63073 Offenbach, Germany
[2] TU Berlin, D-10587 Berlin, Germany
关键词
D O I
10.1109/ICMLA.2007.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a Dynamic Bayesian Network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible Two-Filter inference method and is applicable for on- and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.
引用
收藏
页码:450 / +
页数:2
相关论文
共 50 条
  • [31] Empirical choice of smoothing parameters in robust optical flow estimation
    Shi, MG
    Solo, V
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 349 - 352
  • [32] Robust optical flow estimation via edge preserving filtering
    Rao, Sana
    Wang, Hanzi
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 96
  • [33] Robust optical flow estimation based on brightness correction fields
    Wei Wang
    Zhi-xun Su
    Jin-shan Pan
    Ye Wang
    Ri-ming Sun
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 1010 - 1020
  • [34] Robust estimation of optical flow based on the maximum likelihood estimators
    Lee, KH
    Wohn, KY
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1996, E79D (09) : 1286 - 1295
  • [35] Robust Estimation of Camera Motion Using Optical Flow Models
    Almeida, Jurandy
    Minetto, Rodrigo
    Almeida, Tiago A.
    Torres, Ricardo da S.
    Leite, Neucimar J.
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 435 - +
  • [36] Sparsity Model for Robust Optical Flow Estimation at Motion Discontinuities
    Shen, Xiaohui
    Wu, Ying
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2456 - 2463
  • [37] Robust Optical Flow Estimation Using the Monocular Epipolar Geometry
    Mohamed, Mahmoud A.
    Mertsching, Baerbel
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 521 - 530
  • [38] A Decoupled Approach to Illumination-Robust Optical Flow Estimation
    Kumar, Abhishek
    Tung, Frederick
    Wong, Alexander
    Clausi, David A.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (10) : 4136 - 4147
  • [39] Fusion of Optical Flow and Inertial Measurements for Robust Egomotion Estimation
    Bloesch, Michael
    Omari, Sammy
    Fankhauser, Peter
    Sommer, Hannes
    Gehring, Christian
    Hwangbo, Jemin
    Hoepflinger, Mark A.
    Hutter, Marco
    Siegwart, Roland
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3102 - 3107
  • [40] Robust optical flow estimation using underwater color images
    Negahdaripour, S
    Madjidi, H
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 2309 - 2316